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Associations of autozygosity with a broad range
of human phenotypes
David W Clark et al.#

In many species, the offspring of related parents suffer reduced reproductive success, a

phenomenon known as inbreeding depression. In humans, the importance of this effect has

remained unclear, partly because reproduction between close relatives is both rare and

frequently associated with confounding social factors. Here, using genomic inbreeding

coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated

(p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These

changes are associated with runs of homozygosity (ROH), but not with common variant

homozygosity, suggesting that genetic variants associated with inbreeding depression are

predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first

cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children.

Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH
is independent of all environmental confounding.
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G iven the pervasive impact of purifying selection on all
populations, it is expected that genetic variants with large
deleterious effects on evolutionary fitness will be both rare

and recessive1. However, precisely because they are rare, most of
these variants have yet to be identified and their recessive impact
on the global burden of disease is poorly understood. This is of
particular importance for the nearly one billion people living in
populations where consanguineous marriages are common2, and
the burden of genetic disease is thought to be disproportionately
due to increased homozygosity of rare, recessive variants3–5.
Although individual recessive variants are difficult to identify, the
net directional effect of all recessive variants on phenotypes can
be quantified by studying the effect of inbreeding6, which gives
rise to autozygosity (homozygosity due to inheritance of an allele
identical-by-descent).

Levels of autozygosity are low in most of the cohorts with
genome-wide data7,8 and consequently very large samples are
required to study the phenotypic impact of inbreeding9. Here, we
meta-analyse results from 119 independent cohorts to quantify
the effect of inbreeding on 45 commonly measured complex traits
of biomedical or evolutionary importance, and supplement these
with analysis of 55 more rarely measured traits included in UK
Biobank10.

Continuous segments of homozygous alleles, or runs of
homozygosity (ROH), arise when identical-by-descent haplotypes
are inherited down both sides of a family. The fraction of each
autosomal genome in ROH > 1.5Mb (FROH) correlates well with
pedigree-based estimates of inbreeding11.We estimate FROH using
standard methods and software6,12 for a total of 1,401,776 indi-
viduals in 234 uniform sub-cohorts. The traits measured in each
cohort vary according to original study purpose, but together
cover a comprehensive range of human phenotypes (Fig. 1,
Supplementary Data 7). The five most frequently contributed
traits (height, weight, body mass index, systolic and diastolic
blood pressure) are measured in >1,000,000 individuals; a further
16 traits are measured >500,000 times.

We find that FROH is significantly associated with apparently
deleterious changes in 32 out of 100 traits analysed. Increased

FROH is associated with reduced reproductive success (decreased
number and likelihood of having children, older age at first sex
and first birth, decreased number of sexual partners), as well as
reduced risk-taking behaviour (alcohol intake, ever-smoked, self-
reported risk taking) and increased disease risk (self-reported
overall health and risk factors including grip strength and heart
rate). We show that the observed effects are predominantly
associated with rare (not common) variants and, for a subset of
traits, differ between men and women. Finally, we introduce a
within-siblings method, which confirms that social confounding
of FROH is modest for most traits. We therefore conclude that
inbreeding depression influences a broad range of human phe-
notypes through the action of rare, recessive variants.

Results
Cohort characteristics. As expected, cohorts with different
demographic histories varied widely in mean FROH. The within-
cohort standard deviation of FROH is strongly correlated with the
mean (Pearson’s r= 0.82; Supplementary Fig. 3), and the most
homozygous cohorts provide up to 100 times greater per-sample
statistical power than cosmopolitan European-ancestry cohorts
(Supplementary Data 5). To categorise cohorts, we plotted mean
FROH against FIS (Fig. 2). FIS measures inbreeding as reflected by
non-random mating in the most recent generation, and is cal-
culated as the mean individual departure from Hardy–Weinberg
equilibrium (FSNP; see Methods). Cohorts with high rates of
consanguinity lie near the FROH= FIS line, since most excess SNP
homozygosity is caused by ROH. In contrast, cohorts with small
effective population sizes, such as the Amish and Hutterite iso-
lates of North America, have high average FROH, often despite
avoidance of mating with known relatives, since identical-by-
descent haplotypes are carried by many couples, due to a
restricted number of possible ancestors.

Traits affected by FROH. To estimate the effect of inbreeding on
each of the 100 phenotypes studied, trait values were regressed on
FROH within each cohort, taking account of covariates including
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Anthropometry
Blood pressure
Cognition
Haematology
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Fertility
Blood lipids
Behavioural
Well-being
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Female reproductive
Renal function
Liver enzymes
Inflammatory
Glycaemic
Ocular

Fig. 1 Census of complex traits. Sample sizes are given for analyses of 57 representative phenotypes, arranged into 16 groups covering major organ
systems and disease risk factors. HDL high-density lipoprotein, LDL low-density lipoprotein, hs-CRP high-sensitivity C-reactive protein, TNF-alpha tumour
necrosis factor alpha, FEV1 forced expiratory volume in one second, FVC forced vital capacity, eGFR estimated glomerular filtration rate
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age, sex, principal components of ancestry and, in family studies,
a genomic relationship matrix (GRM) (Supplementary Data 3).
Cross-cohort effect size estimates were then obtained by fixed-
effect, inverse variance-weighted meta-analysis of the within-
cohort estimates (Supplementary Data 10). Twenty-seven out of
79 quantitative traits and 5 out of 21 binary traits reach
experiment-wise significance (0.05/100 or p < 0.0005; Fig. 3a, b).
Among these are replications of the previously reported effects on
reduction in height13, forced expiratory lung volume in one
second, cognition and education attained6. We find that the 32
phenotypes affected by inbreeding can be grouped into five
broader categories: reproductive success, risky behaviours, cog-
nitive ability, body size, and health.

Despite the greater individual control over reproduction in the
modern era, due to contraception and fertility treatments, we find
that increased FROH has significant negative effects on five traits
closely related to fertility. For example, an increase of 0.0625 in
FROH (equivalent to the difference between the offspring of first
cousins and those of unrelated parents) is associated with having
0.10 fewer children [β0.0625=−0.10 ± 0.03 95% confidence
interval (CI), p= 1.8 × 10−10]. This effect is due to increased
FROH being associated with reduced odds of having any children
(OR0.0625= 0.65 ± 0.04, p= 1.7 × 10−32) as opposed to fewer
children among parents (β0.0625= 0.007 ± 0.03, p= 0.66). Since

autozygosity also decreases the likelihood of having children in
the subset of individuals who are, or have been, married,
(OR0.0625= 0.71 ± 0.09, p= 3.8 × 10−8) it appears that the cause
is a reduced ability or desire to have children, rather than reduced
opportunity. Consistent with this interpretation, we observe no
significant effect on the likelihood of marriage (OR0.0625= 0.94 ±
0.07, p= 0.12) (Fig. 3b). All effect size, odds ratios and 95% CI are
stated as the difference between FROH= 0 and FROH= 0.0625.

The effects on fertility may be partly explained by the effect of
FROH on a second group of traits, which capture risky or addictive
behaviour. Increased FROH is associated with later age at first sex
(β0.0625= 0.83 ± 0.19 years, p= 5.8 × 10−17) and fewer sexual
partners (β0.0625=−1.38 ± 0.38, p= 2.0 × 10−12) but also
reduced alcohol consumption (β0.0625=−0.66 ± 0.12 units per
week, p= 1.3 × 10−22), decreased likelihood of smoking
(OR0.0625= 0.79 ± 0.05, p= 5.9 × 10−13), and a lower probability
of being a self-declared risk-taker (OR0.0625= 0.84 ± 0.06, p=
3.4×10−5) or exceeding the speed limit on a motorway (p= 4.0 ×
10−8). Conservative beliefs are likely to affect these traits, and are
known to be confounded with FROH in some populations14,
however, fitting religious participation as a covariate in UKB
reduces, but does not eliminate the reported effects (Supplemen-
tary Fig. 10b, Supplementary Data 20). Similarly, fitting
educational attainment as an additional covariate reduces 16 of
25 significant effect estimates, but actually increases 9, including
age at first sex and number of children (Supplementary Fig. 10a,
Supplementary Data 20). This is because reduced educational
attainment is associated with earlier age at first sex and increased
number of children, which makes it an unlikely confounder for
the effects of FROH, which are in the opposite directions.

A third group of traits relates to cognitive ability. As previously
reported, increased autozygosity is associated with decreased
general cognitive ability, g6,15 and reduced educational attain-
ment6. Here, we also observe an increase in reaction time
(β0.0625= 11.6 ± 3.9 ms, p= 6.5 × 10−9), a correlate of general
cognitive ability (Fig. 3a, Supplementary Data 10).

A fourth group relates to body size. We replicate previously
reported decreases in height and forced expiratory volume6
(Supplementary Data 21) and we find that increased FROH
is correlated with a reduction in weight (β0.0625= 0.86 ± 0.12 kg,
p= 3.4 × 10−28) and an increase in the waist to hip ratio (β0.0625
= 0.004 ± 0.001, p= 1.4 × 10−11).

The remaining effects are loosely related to health and frailty;
higher FROH individuals report significantly lower overall
health and slower walking pace, have reduced grip strength
(β0.0625=−1.24 ± 0.19 kg, p= 6.9 × 10−24), accelerated self-
reported facial ageing, and poorer eyesight and hearing. Increased
FROH is also associated with faster heart rate (β0.0625= 0.56 ± 0.24
bpm, p= 5.9 × 10−6), lower haemoglobin (β0.0625= 0.81 ± 0.24 gL
−1, p= 1.6 × 10−11), lymphocyte percentage, and total cholesterol
(β0.0625=−0.05 ± 0.015 mmol L−1, p= 5.2 × 10−10).

Sex-specific effects of FROH. Intriguingly, for a minority of traits
(13/100), the effect of FROH differs between men and women
(Fig. 3c, Supplementary Data 12). For example, men who are the
offspring of first cousins have 0.10 mmol L−1 [95% CI 0.08–0.12]
lower total cholesterol on average, while there is no significant
effect in women; LDL shows a similar pattern. More generally, for
these traits, the effect in men is often of greater magnitude than
the effect in women, perhaps reflecting differing relationships
between phenotype and fitness.

Associations most likely caused by rare, recessive variants. The
use of ROH to estimate inbreeding coefficients is relatively new in
inbreeding research11,16–19. Earlier frequency-based estimators
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such as FSNP and FGRM20, made use of excess marker homo-
zygosity21–23 and did not require physical maps. We performed
both univariate and multivariate regressions to evaluate the
effectiveness of FROH against these measures. The correlations
between them range from 0.13 to 0.99 and are strongest in
cohorts with high average inbreeding (Supplementary Data 6,
Supplementary Fig. 6). Significantly, univariate regressions of
traits on both FSNP and FGRM show attenuated effect estimates
relative to FROH (Supplementary Data 13). This attenuation is
greatest in low autozygosity cohorts, suggesting that FROH is a
better estimator of excess homozygosity at the causal loci
(Fig. 4c).

To explore this further, we fit bivariate models with FROH and
FGRM as explanatory variables. For all 32 traits that were
significant in the univariate analysis, we find that bβFROHjFGRM is

of greater magnitude than bβFGRMjFROHin the conditional analysis
(Fig. 4b, Supplementary Data 22). This suggests that inbreeding
depression is predominantly caused by rare, recessive variants
made homozygous in ROH, and not by the chance homozygosity
of variants in strong LD with common SNPs (Fig. 4d,
Supplementary Note 5). We also find that ROH of different

lengths have similar effects per unit length (Fig. 4a, Supplemen-
tary Fig. 11a), consistent with their having a causal effect on traits
and not with confounding by socioeconomic or other factors, as
shorter ROH arise from deep in the pedigree are thus less
correlated with recent consanguinity.

Quantifying the scope of social confounding. Previous studies
have highlighted the potential for FROH to be confounded by non-
genetic factors6,24. We therefore estimated the effect of FROH
within various groups, between which confounding might be
expected either to differ, or not be present at all.

For example, the effect of FROH on height is consistent across
seven major continental ancestry groups (Supplementary Fig. 1,
Supplementary Data 18), despite differing attitudes towards
consanguinity, and consequently different burdens and origins of
ROH. Similarly, grouping cohorts into consanguineous, more
cosmopolitan, admixed and those with homozygosity due to
ancient founder effects also shows consistent effects (Supplemen-
tary Fig. 2, Supplementary Data 19). Equally, categorising samples
into bins of increasing FROH shows a dose-dependent response of
the study traits with increased FROH (Supplementary Data 17 and

a b

c

Height

Weight

Forced expiratory volume

Grip strength

Cognitive g

Education attained

Reaction time

Number of children

Age at first birth (men)

Age at first sex

Number of sexual partners

Driving speeding

Alcohol units per week

Self-reported overall health

Walking pace

Frequency of vigorous activity

Heart rate

Waist-Hip ratio 

Facial ageing

Visual acuity

Hearing acuity

Haemoglobin

Lymphocytes (%)

Total cholesterol

LDL cholesterol

p-value

p-value7e−149

3e−28

8e−22

7e−24

3e−17

7e−27

6e−09

2e−10

2e−18

6e−17

2e−12

4e−08

1e−22

3e−11

7e−18

8e−05

6e−06

1e−11

1e−16

1e−06

1e−09

2e−11

2e−11

5e−10

5e−04

−4 −3 −2 −1 0 1 2 3 4 5

Effect size (trait !sd per FROH)
−4 −2 0 2 4

−4

−2

0

2

4

Effect in MEN (trait !sd/FROH)

E
ffe

ct
 in

 W
O

M
E

N
 (

tr
ai

t !
sd

/F
R

O
H

)

1

2
34 5 6

7
8

9

10

11 12

13
1    Weight
2    Body mass index
3    Age at first birth
4    Haemoglobin
5    Total cholesterol
6    Triglycerides
7    Alanine transaminase

8    Gamma-glutamyl transferase
9    Grip strength
10   Systolic blood pressure
11   LDL cholesterol
12   White blood cell count
13   Age at first sex

Ever had children

Ever married

Ever had children (married)

Ever had children (unmarried)

Self-reported infertility

Self-reported risk taker

Ever smoked

2e−32

0.1

4e−08

2e−06

6e−04

3e−05

6e−13

−0.5 0 0.5 1 1.5
Log odds−ratio for FROH = 0.0625 

Fig. 3 Scope of inbreeding depression. a Effect of FROH on 25 quantitative traits. To facilitate comparison between traits, effect estimates are presented in
units of within-sex standard deviations. Traits shown here reached Bonferroni-corrected significance of p= 0.0005 (=0.05/100 traits). Sample sizes,
within-sex standard deviations, and effect estimates in measurement units are shown in Supplementary Data 9. FEV1 forced expiratory volume in one
second. Traits are grouped by type. b Effect of FROH on eight binary traits with associated p values. Effect estimates are reported as ln(Odds-Ratio) for the
offspring of first cousins, for which E(FROH)= 0.0625. Self-declared infertility is shown for information, although this trait does not reach Bonferroni
corrected significant (OR0:0625 = 2.6 ± 1.1, p= 0.0006). Numbers of cases and controls and effect estimates for all binary traits are shown in
Supplementary Data 10. c Sex-specificity of ROH effects. The effect of FROH in men versus that in women is shown for 13 traits for which there was
evidence of significant differences in the effects between sexes. For 11 of these 13 traits the magnitude of effect is greater in men than in women. Traits
such as liver enzymes levels (alanine transaminase, gamma-glutamyl transferase) show sex-specific effects of opposite sign (positive in women, negative
in men), which cancel out in the overall analysis. BMI body mass index, LDL low-density lipoprotein. All errors bars represent 95% confidence intervals

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12283-6

4 NATURE COMMUNICATIONS | ��������(2019)�10:4957� | https://doi.org/10.1038/s41467-019-12283-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 5a, b show the response for height and ever having children;
Supplementary Figs 9a–f for all significant traits). The propor-
tionality of these effects is consistent with a genetic cause, while it
is difficult to envisage a confounder proportionally associated
across the entire range of observed FROH. In particular, the
highest FROH group (FROH > 0.18), equivalent to the offspring of
first-degree relatives, are found to be, on average, 3.4 [95% CI
2.5–4.3] cm shorter and 3.1 [95% CI 2.5–3.7] times more likely to
be childless than an FROH= 0 individual.

Next, we estimated βFROH
for 7153 self-declared adopted

individuals in UK Biobank, whose genotype is less likely to be
confounded by cultural factors associated with the relatedness of
their biological parents. For all 26 significant traits measured in
this cohort, effect estimates are directionally consistent with the
meta-analysis and 3 (height, walking pace and hearing acuity)

reach replication significance (p < 0.004). In addition, a meta-
analysis of the ratio bβFROH ADOPTEE

: bβFROH across all traits differs
significantly from zero (Fig. 5c; average= 0.78, 95% CI 0.56–1.00,
p= 2 × 10−12).

Finally, the effect of FROH was estimated in up to 118,773
individuals in sibships (full-sibling pairs, trios, etc.: bβFROH wSibs

).
FROH differences between siblings are caused entirely by
Mendelian segregation, and are thus independent of any reason-
able model of confounding. The variation of FROH among siblings
is a small fraction of the population-wide variation11 (Supple-
mentary Data 5); nevertheless, 23 out of 29 estimates of bβFROH wSibs

are directionally consistent with bβFROH , and two (self-reported
overall health and ever having children) reach replication
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The effects of shorter (<5Mb) and longer (>5Mb) ROH per unit length are similar and strongly negative, whereas the effect of homozygosity outside ROH
is much weaker. The pattern is similar for other traits (Supplementary Fig. 11a; Supplementary Data 14). b FROH is more strongly associated than FGRM in a
bivariate model of height. Meta-analysed effect estimates, and 95% confidence intervals, are shown for a bivariate model of height
(Height ! FROH þ FGRM). The reduction in height is more strongly associated with FROH than FGRM, as predicted if the causal variants are in weak LD with
the common SNPs used to calculate FGRM (Supplementary Note 5). The pattern is similar for other traits (Supplementary Fig. 15a, b; Supplementary

Data 22). c FROH is a lower variance estimator of the inbreeding coefficient than FGRM. The ratio of βFGRM : βFROH is plotted against varðFROHÞ
varðFGRMÞ for all traits in all

cohorts. When the variation of FGRM which is independent of FROH has no effect on traits, β̂FGRM is downwardly biased by a factor of varðFROHÞ
varðFGRMÞ (Supplementary

Note 4). A linear maximum likelihood fit, shown in red, has a gradient consistent with unity [1.01; 95% CI 0.84–1.18], as expected when the difference
between FGRM and FROH is not informative about the excess homozygosity at causal variants (Supplementary Note 5). d FROH is a better predictor of rare
variant homozygosity than FGRM. The excess homozygosities of SNPs, extracted from UK Biobank imputed genotypes, were calculated at seven discrete
minor allele frequencies (FMAF), and regressed on two estimators of inbreeding in a bivariate statistical model (see Supplementary Note 5). The
homozygosity of common SNPs is better predicted by FGRM, but rare variant homozygosity is better predicted by FROH. The results from real data (Fig. 4b,
Supplementary Figs 15a, b and Supplementary Data 22) are consistent with those simulated here, if the causal variants are predominantly rare. All errors
bars represent 95% confidence intervals
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Fig. 5 Evidence ROH effects are un-confounded. a Linear decrease in height with increasing FROH. Average heights (in metres) is plotted in bins of
increasing FROH. The limits of each bin are shown by red dotted lines, and correspond to the offspring of increasing degree unions left-to-right. The overall
estimate of βFROH is shown as a solid black line. Subjects with kinship equal to offspring of full-sibling or parent–child unions are significantly shorter than
those of avuncular or half-sibling unions who in turn are significantly shorter than those of first-cousin unions. b Linear decrease in odds of ever having
children with increasing FROH. Linear model approximations of ln(Odds-Ratio) for ever having children (1= parous, 0= childless) are plotted in bins of
increasing FROH. A strong relationship is evident, extending beyond the offspring of first cousins. c ROH effects are consistent in adoptees. The ratios of
effect estimates, βFROH , between adoptees and all individuals are presented by trait. All traits are directionally consistent and overall show a strongly
significant difference from zero (average= 0.78, 95% CI 0.56–1.00, p= 2 × 10−12). FEV1 forced expiratory volume in one second. d ROH effects are
consistent in full siblings. The ratios of effect estimates within full siblings to effects in all individuals (βFROH wSibs

: βFROH ) are presented by trait. Twenty-three
of 29 estimates are directionally consistent and overall show a significant difference from zero (average= 0.78, 95% CI 0.53–1.04, p= 7 × 10−10). BMI
body mass index. All errors bars represent 95% confidence intervals
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significance. A meta-analysis of the ratio bβFROH wSibs
: bβFROH for all

traits is significantly greater than zero (Fig. 5d; average= 0.78,
95% CI 0.53–1.04, p= 7 × 10−10), indicating a substantial fraction
of these effects is genetic in origin. However, for both adoptees
and siblings, the point estimates are less than one, suggesting that
non-genetic factors probably contribute a small, but significant,
fraction of the observed effects.

Discussion
Our results reveal inbreeding depression to be broad in scope,
influencing both complex traits related to evolutionary fitness and
others where the pattern of selection is less clear. While studies of
couples show optimal fertility for those with distant kinship25,26,
fewer have examined reproductive success as a function of indi-
vidual inbreeding. Those that did are orders of magnitude smaller
in size than the present study, suffer the attendant drawbacks of
pedigree analysis, and have found mixed results27–29. Our geno-
mic approach also reveals that in addition to socio-demographic
factors and individual choice, recessive genetic effects have a
significant influence on whether individuals reproduce. The dis-
cordant effects on fertility and education demonstrate that this is
not just a result of genetic correlations between the two
domains30.

The effects we see on fertility might be partially mediated
through a hitherto unknown effect of autozygosity on decreasing
the prevalence of risk-taking behaviours. Significant effects of
autozygosity are observed for self-reported risk taking, speeding
on motorways, alcohol and smoking behaviour, age at first sexual
intercourse and number of sexual partners. Independent evidence
for a shared genetic architecture between risk-taking and fertility
traits comes from analysis of genetic correlations using LD-score
regression in UKB (Supplementary Table 1). The core fertility
traits, ever had children and number of children, are strongly
genetically correlated (rG= 0.93; p < 10−100). Genetic correlations
with ever-smoking and self-reported risk-taking are lower, but
also significant: 0.23–0.27, p < 10−10. Age at first sex is strongly
genetically correlated both with the fertility traits, (rG=
0.53–0.57), and number of sexual partners, ever-smoking and
risk-taking30 (rG= 0.42–0.60).

Reproductive traits are understandable targets of natural
selection, as might be walking speed, grip strength, overall health,
and visual and auditory acuity. While we cannot completely
exclude reverse causality, whereby a less risk-taking, more con-
servative, personality is associated with greater likelihood of
consanguineous marriage, we note that the effects are consistent
for ROH < 5Mb, which are less confounded with mate choice,
due to their more distant pedigree origins (Supplementary
Fig. 11a). This group of traits also shows similar evidence for un-
confounded effects in the analysis of adoptees and full siblings
(Fig. 5c, d; Supplementary Data 16) and the signals remained
after correcting for religious activity or education.

On the other hand, for some traits that we expected to be
influenced by ROH, we observed no effect. For example, birth
weight is considered a key component of evolutionary fitness in
mammals, and is influenced by genomic homozygosity in deer31;
however, no material effect is apparent here (Supplementary
Data 10). Furthermore, in one case, ROH appear to provide a
beneficial effect: increasing FROH significantly decreases total and
LDL-cholesterol in men, and may thus be cardio-protective in
this regard.

Our multivariate models show that homozygosity at common
SNPs outside of ROH has little influence on traits, and that the
effect rather comes from ROH over 1.5 Mb in length. This sug-
gests that genetic variants causing inbreeding depression are
almost entirely rare, consistent with the dominance hypothesis1.

The alternative hypothesis of overdominance, whereby positive
selection on heterozygotes has brought alleles to intermediate
frequencies, would predict that more common homozygous SNPs
outside long ROH would also confer an effect. The differential
provides evidence in humans that rare recessive mutations
underlie the quantitative effects of inbreeding depression.

Previous studies have shown that associations observed
between FROH and traits do not prove a causal relationship14,24.
Traditional Genome-wide Association Studies (GWAS) can infer
causality because, in the absence of population structure, genetic
variants (SNPs) are randomly distributed between, and within,
different social groups. However, this assumption does not hold
in studies of inbreeding depression, where, even within a
genetically homogeneous population, social groups may have
differing attitudes towards consanguinity, and therefore different
average FROH and, potentially, different average trait values. We
therefore present a number of analyses that discount social
confounding as a major factor in our results. Firstly, we show that
the effects are consistent across diverse populations, including
those where ROH burden is driven by founder effects rather than
cultural practices regarding marriage. Effects are also consistent
across a 20-fold range of FROH: from low levels, likely unknown to
the subject, to extremely high levels only seen in the offspring of
first-degree relatives. Secondly, we show that the effects of ROH
are consistent in direction and magnitude among adopted indi-
viduals, and also for short ROH which are not informative about
parental relatedness. Finally, we introduce a within-siblings
method, independent of all confounders, that confirms a
genetic explanation for most of the observed effects. Variation in
FROH between siblings is caused entirely by random Mendelian
segregation; we show that higher FROH siblings experience poorer
overall health and lower reproductive success, as well as other
changes consistent with population-wide estimates. Nevertheless,
average effect sizes from both adoptees and siblings are 20%
smaller than population-wide estimates, confirming the impor-
tance of accounting for social confounding in future studies of
human inbreeding depression.

Our results reveal five large groups of phenotypes sensitive to
inbreeding depression, including some known to be closely linked
to evolutionary fitness, but also others where the connection is,
with current knowledge, more surprising. The effects are medi-
ated by ROH rather than homozygosity of common SNPs, cau-
sally implicating rare recessive variants rather than
overdominance as the most important underlying mechanism.
Identification of these recessive variants will be challenging, but
analysis of regional ROH and in particular using whole-genome
sequences in large cohorts with sufficient variance in autozygosity
will be the first step. Founder populations or those which prefer
consanguineous marriage will provide the most power to
understand this fundamental phenomenon.

see Supplementary Data.

Methods
Overview. Our initial aim was to estimate the effect of FROH on 45 quantitative
traits and to assess whether any of these effects differed significantly from zero.
Previous work7,11 has shown that inbreeding coefficients are low in most human
populations, and that very large samples are required to reliably estimate the
genetic effects of inbreeding13. To maximise sample size, a collaborative con-
sortium (ROHgen6) was established, and research groups administering cohorts
with SNP chip genotyping were invited to participate. To ensure that all partici-
pants performed uniform and repeatable analyses, a semi-automated software
pipeline was developed and executed locally by each research group. This software
pipeline required cohorts to provide only quality-controlled genotypes (in plink
binary format) and standardised phenotypes (in plain-text) and used standard
software (R, PLINK12,32, KING33) to perform the analyses described below. Results
from each cohort were returned to the central ROHgen analysts for meta-analysis.

During the initial meta-analysis, genotypes were released for >500,000 samples
from the richly phenotyped UK Biobank (UKB)10. It was therefore decided to add a
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further 34 quantitative phenotypes and 21 binary traits to the ROHgen analysis.
Many of these additional traits were unique to UKB, although 7 were also available
in a subset of ROHgen cohorts willing to run additional analyses. In total, the effect
of FROH was tested on 100 traits and therefore experiment-wise significance was
defined as 5 × 10−4 (=0.05/100).

Cohort recruitment. In total, 119 independent, genetic epidemiological study
cohorts were contributed to ROHgen. Of these, 118 were studies of adults and
contributed multiple phenotypes, while 1 was a study of children and contributed
only birth weight. To minimise any potential confounding or bias caused by
within-study heterogeneity, studies were split into single-ethnicity sub-cohorts
wherever applicable. Each sub-cohort was required to use only one genotyping
array and be of uniform ancestry and case-status. For example, if a study contained
multiple distinct ethnicities, sub-cohorts of each ancestry were created and ana-
lysed separately. At minimum, ancestry was defined on a sub-continental scale (i.e.
European, African, East Asian, South Asian, West Asian, Japanese, and Hispanic
were always analysed separately) but more precise separation was used when
deemed necessary, for example, in cohorts with large representation of Ashkenazi
Jews. In case-control studies of disease, separate sub-cohorts were created for cases
and controls and phenotypes associated with disease status were not analysed in
the case cohort: for example, fasting plasma glucose was not analysed in Type 2
diabetes case cohorts. Occasionally, cohorts had been genotyped on different SNP
genotyping microarrays and these were also separated into sub-cohorts. There was
one exception (deCODE) to the single microarray rule, where the intersection
between all arrays used exceeded 150,000 SNPs. In this cohort the genotype data
from all arrays was merged since the correspondence between FROH for the indi-
vidual arrays and FROH the intersection dataset was found to be very strong
(βmerged;hap = 0.98, r2= 0.98; βmerged;omni = 0.97, r2=0.97). Dividing studies using
these criteria yielded 234 sub-cohorts. Details of phenotypes contributed by each
cohort are available in Supplementary Data 4.

Ethical approval. Data from 119 independent genetic epidemiology studies were
included. All subjects gave written informed consent for broad-ranging health and
genetic research and all studies were approved by the relevant research ethics
committees or boards. PubMed references are given for each study in Supple-
mentary Data 2.

Genotyping. All samples were genotyped on high-density (minimum 250,000
markers), genome-wide SNP microarrays supplied by Illumina or Affymetrix.
Genotyping arrays with highly variable genomic coverage (such as Exome chip,
Metabochip, or Immunochip) were judged unsuitable for the ROH calling algo-
rithm and were not permitted. Imputed genotypes were also not permitted; only
called genotypes in PLINK binary format were accepted. Each study applied their
own GWAS quality controls before additional checks were made in the common
analysis pipeline: SNPs with >3% missingness or MAF <5% were removed, as were
individuals with >3% missing data. Only autosomal genotypes were used for the
analyses reported here. Additional, cohort-specific, genotyping information is
available in Supplementary Data 2.

Phenotyping. In total, results are reported for 79 quantitative traits and 21 binary
traits. These traits were chosen to represent different domains of health and
reproductive success, with consideration given to presumed data availability. Many
of these traits have been the subject of existing genome-wide association meta-
analyses (GWAMA), and phenotype modelling, such as inclusion of relevant
covariates, was copied from the relevant consortia (GIANT for anthropometry,
EGG for birth weight, ICBP for blood pressures, MAGIC for glycaemic traits,
CHARGE-Cognitive, -Inflammation & -Haemostasis working groups for cognitive
function, CRP, fibrinogen, CHARGE-CKDgen for eGFR, CHARGE-ReproGen for
ages at menarche and menopause, Blood Cell & HaemGen for haematology,
GUGC for urate, RRgen, PRIMA, QRS & QT-IGC for electrocardiography, GLGC
for classical lipids, CREAM for spherical equivalent refraction, Spirometa for lung
function traits, and SSGAC for educational attainment and number of children
ever born). Further information about individual phenotype modelling is available
in Supplementary Note 1 and Supplementary Data 8.

ROH calling. Runs of homozygosity (ROH) of >1.5 Mb in length were identified
using published methods6,11. In summary, SNPs with minor allele frequencies
below 5% were removed, before continuous ROH SNPs were identified using
PLINK with the following parameters: homozyg-window-snp 50; homozyg-snp 50;
homozyg-kb 1500; homozyg-gap 1000; homozyg-density 50; homozyg-window-
missing 5; homozyg-window-het 1. No linkage disequilibrium pruning was per-
formed. These parameters have been previously shown to call ROH that corre-
spond to autozygous segments in which all SNPs (including those not present on
the chip) are homozygous-by-descent, not chance arrangements of independent
homozygous SNPs, and inbreeding coefficient estimates calculated by this method
(FROH) correlate well with pedigree-based estimates (FPED)11. Moreover, they have
also been shown to be robust to array choice6.

Calculating estimators of F. For each sample, two estimates of the inbreeding
coefficient (F) were calculated, FROH and FSNP. We also calculated three additional
measures of homozygosity: FROH<5Mb, FROH>5Mb and FSNP_outsideROH.

FROH is the fraction of each genome in ROH >1.5 Mb. For example, in a sample
for which PLINK had identified n ROH of length li (in Mb), i ϵ {1..n}, then FROH
was then calculated as

FROH ¼
Pn

i¼1
li

3Gb
; ð1Þ

where FROH<5Mb and FROH>5Mb are the genomic fractions in ROH of length >5Mb,
and in ROH of length <5Mb (but >1.5 Mb), respectively, and the length of the
autosomal genome is estimated at 3 gigabases (Gb). It follows from this definition
that

FROH ¼ FROH>5Mb þ FROH<5Mb : ð2Þ
Single-point inbreeding coefficients can also be estimated from individual SNP

homozygosity without any reference to a genetic map. For comparison with FROH,
a method of moments estimate of inbreeding coefficient was calculated34, referred
to here as FSNP, and implemented in PLINK by the command–het.

FSNP ¼ O HOMð Þ&E HOMð Þ
N&E HOMð Þ ; ð3Þ

where O(HOM) is the observed number of homozygous SNPs, E(HOM) is the
expected number of homozygous SNPs, i.e.

PN
i¼1 1& 2piqið Þ, and N is the total

number of non-missing genotyped SNPs.
FROH and FSNP are strongly correlated, especially in cohorts with significant

inbreeding, since both are estimates of F. To clarify the conditional effects of FROH
and FSNP, an additional measure of homozygosity,FSNPoutsideROH, was calculated to
describe the SNP homozygosity observed outside ROH.

FSNPoutsideROH ¼ O′ HOMð Þ&E′ HOMð Þ
N′&E′ HOMð Þ ; ð4Þ

where

O′ HOMð Þ ¼ O HOMð Þ & NSNP ROH ; ð5Þ

E′ HOMð Þ ¼ N&NROH
N

! "
' E HOMð Þ ; ð6Þ

N′ ¼ N & NROH ð7Þ

And NSNP_ROH is the number of homozygous SNPs found in ROH. Note that:

FSNPoutsideROH ( FSNP & FROH ð8Þ
A further single point estimator of the inbreeding coefficient, described by Yang

et al.20 as bFIII, is implemented in PLINK by the parameter –ibc (Fhat3) and was
also calculated for all samples.

FGRM ¼ bFIII ¼ 1
N

XN

i¼1

x2i & 1þ 2pið Þxi þ 2p2i
# $

2pi 1& pið Þ ; ð9Þ

where N is the number of SNPs, pi is the reference allele frequency of the ith SNP in
the sample population and xi is the number of copies of the reference allele.

Effect size estimates for quantitative traits. In each cohort of n samples, for
each of the quantitative traits measured in that cohort, trait values were modelled
by

y ¼ βFROH ' FROH þ Xbþ ε ; ð10Þ

where y is a vector (n × 1) of measured trait values, βFROH
is the unknown scalar

effect of FROH on the trait, FROH is a known vector (n × 1) of individual FROH, b is a
vector (m × 1) of unknown fixed covariate effects (including a mean, μ), X in a
known design matrix (n ×m) for the fixed effects, and ε is an unknown vector (n ×
1) of residuals.

The m fixed covariates included in each model were chosen with reference to
the leading GWAMA consortium for that trait and are detailed in Supplementary
Data 8. For all traits, these covariates included: age (and/or year of birth), sex, and
at least the first 10 principal components of the genomic relatedness matrix
(GRM). Where necessary, additional adjustments were made for study site,
medications, and other relevant covariates (Supplementary Data 3).

For reasons of computational efficiency, it was decided to solve Eq. (10) in two
steps. In the first step, the trait (y) was regressed on all fixed covariates to obtain the
maximum likelihood solution of the model:

y ¼ Xbþ ε′ : ð11Þ
All subsequent analyses were performed using the vector of trait residuals ε′,

which may be considered as the trait values corrected for all known covariates.
In cohorts with a high degree of relatedness, mixed-modelling was used to

correct for family structure, although, because ROH are not narrow-sense heritable,
this was considered less essential than in Genome-Wide Association Studies.
Equation (11) becomes

y ¼ Xbþ uþ ε′; ð12Þ
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where u is an unknown vector (n × 1) of polygenic effects with multivariate normal
distribution of mean 0 and covariance matrix σg2A, where A is the genomic
relationship matrix (GRM). In these related cohorts, a GRM was calculated using
PLINK v1.9 and Grammar+ residuals of Eq. (12) were estimated using
GenABEL35. These Grammar+ residuals (ε′) were used in subsequent analyses.

To estimate βFROH
for each trait, trait residuals were regressed on FROH to obtain

the maximum likelihood (ML) solution of the model

ε′ ¼ μþ βFROH ' FROH þ ε: ð13aÞ
The sex-specific estimates of βFROH

(Supplementary Data 12) were obtained
from Eq. (13) applied to the relevant sex.

For all traits, a corresponding estimates of βFSNP
and βFGRM were obtained from

the models

ε′ ¼ μþ βFSNP ' FSNP þ ε; ð13bÞ

ε′ ¼ μþ βFGRM ' FGRM þ ε ð14Þ

and the effects of different ROH lengths and of SNP homozygosity (Fig. 4b) were
obtained from the model

ε′ ¼ μþ β1 ' FSNPoutsideROH

! "
þ β2 ' FROH<5Mb

# $

þ β3 ' FROH>5Mb

# $
þ ε

: ð15Þ

Effect size estimates for binary traits. Binary traits were analysed by two
methods. The primary estimates of βFROH

(Fig. 3b and Supplementary Data 10)
were obtained from full logistic models:

g E y½ *ð Þ ¼ Xb ; ð16Þ

where g() is the link function (logit), and where FROH and all applicable covariates
(Supplementary Datas 3, 8) were fitted simultaneously. Mixed modelling for family
structure was not attempted in the logistic models since an accepted method was
not apparent.

For all subsequent results, y was scaled by 1=σ2y and analysed by linear models,
as for quantitative traits, including mixed-modelling where appropriate for family
studies. This method of estimating binary traits with simple linear models gives
asymptotically unbiased estimates of βFROH

and se(βFROH
) on the ln(Odds-Ratio)

scale36. For all significant binary traits, a comparison of bβFROH from the full model

with bβFROH from the linear model approximation is presented in Supplementary
Fig. 8.

To give bβFROH a more tangible interpretation, effect estimates are frequently
quoted in the text as β0.0625, i.e. the estimated effect in the offspring of first cousins,
where 6.25% of the genome is expected to be autozygous.

Religiosity and educational attainment as additional covariates. To assess the
importance of potential social confounders, proxy measures of socio-economic
status and religiosity were separately included in Eq. (13) as additional covariates.
The modified effect estimates (bβ′FROH ) were tested for significance (Supplementary
Data 20) and compared to the uncorrected estimates (βFROH

) (Supplementary
Fig. 10a, b).

Since Educational Attainment (EA) was measured in many cohorts, this was
chosen as the most suitable proxy for socio-economic status. However, since FROH
is known to affect EA directly6 any change in βFROH

when conditioning on EA
cannot be assumed to be entirely due to environmental confounding.

The analysis of religiosity was only carried out in UKB, where a rough proxy
was available. Although no direct questions about religious beliefs were included,
participants were asked about their leisure activities. In response to the question
Which of the following do you attend once a week or more often? (You can select
more than one), 15.6% of UKB participants selected Religious Group from one of
the seven options offered. In the models described, religiosity was coded as 1 for
those who selected Religious Group and 0 for those who did not. Although this is
likely to be an imperfect measure of actual religious belief it is currently the best
available in a large dataset.

Assortative mating. Humans are known to mate assortatively for a number of
traits including height and cognition37, and so we sought to investigate if this could
influence our results, for example, by the trait extremes being more genetically
similar and thus the offspring more homozygous. We see no evidence for an effect
of assortative mating on autozygosity, however. Firstly, a polygenic risk score for
height (see Supplementary Note 1), which explains 18.7% of the phenotypic var-
iance in height, was not associated with FROH (p= 0.77; Supplementary Fig. 5).
Secondly, linear relationships between traits and autozygosity extend out to very
high FROH individuals (Supplementary Figs. 9a–f). Samples in the highest FROH
group are offspring of genetically similar parents, very likely first or second degree
relatives and, for example, the height of these samples is on average 3.4 cm [95% CI
2.5–4.3] shorter than the population mean. Assortative mating would suggest this

height deficit has been inherited from genetically shorter parents, but this would
require an implausibly strong relationship between short stature and a propensity
to marry a very close relative. Thirdly, the sex-specific effects we observe could only
be explained by assortative mating if the additive heritability of these traits also
differed by gender.

Average trait values in groups of similar FROH. In each cohort individuals were
allocated to one of ten groups of similar FROH. The bounds of these groups were the
same for all cohorts, specifically {0, 0.002, 0.0041, 0.0067, 0.0108, 0.0186, 0.0333,
0.06, 0.10, 0.18 and 1.0}. Within each group the mean trait residual (ε′) and mean
FROH were calculated, along with their associated standard errors. Within each
cohort the expectation of ε′ is zero at the mean FROH, however as mean FROH varies
between cohorts (Fig. 2, Supplementary Data 5) it was necessary to express ε′
relative to a common FROH before meta-analysis. Hence, for this analysis only, the
trait residuals (ε′) were expressed relative to the FROH= 0 intercept, i.e. by sub-
tracting μ from Eq. (13).

Effect of FROH within adoptees. We compared βFROH ADOPTEE
to cross-cohort

βFROH
, not that from UKB alone, as we consider the latter to be a noisy estimate

of the former; estimates in UKB are consistent with those from meta-analysis.

Effect of FROH within full-sibling families. In a subset of cohorts, with substantial
numbers of related individuals, further analyses were performed to investigate the
effect of FROH within full-sibling families. In each of these cohorts, all second-
degree, or closer, relatives were identified using KING (parameters:–related–degree
2). Full-siblings were then selected as relative pairs with genomic kinship >0.175
and IBS0 >0.001. This definition includes monozygotic twins, who were inten-
tionally considered as part of full-sibling families. Although monozygotic twins are
expected to have identical FROH, they may not have identical trait values, and
including additional trait measurements decreases the sampling error of the within-
family variance estimate, hence increasing statistical power. Dizygotic twins were
also included.

For each individual (j) with identified siblings, the values of FROH and trait
residual (ε′) were calculated relative to their family mean (and called FjROH_wSibs

and εjwSibs, respectively), i.e. for individual j with n full-siblings Sk where k ϵ {1..n}

FROHwSibs
j ¼ FROH

j & 1
nþ1ð Þ

P
iϵ j;Skf g F

ROH
i ; ð17Þ

εwSibsj ¼ ε′j & 1
nþ1ð Þ

P
iϵ j;Skf g ε′i : ð18Þ

The effect of FROH within-full-siblings (βFROH wSibes) was estimated by linear
regression of εwSibs on FROH_wSibs.

Importantly, the variation of FROH within full-siblings is entirely caused by
differences in Mendelian segregation, and is therefore completely independent of
all possible confounders. Hence, the effect estimates obtained by this method are
estimates of the genetic effects of FROH, unbiased by any possible confounder. Since
confounding by social factors is a major concern in this field, methods that can
definitively exclude this possibility are of critical importance.

Between-cohort meta-analysis. As is typical in genome-wide association meta-
analyses (GWAMA), genetic effects were estimated within single-ethnicity sub-
cohorts, and meta-analysis of the within-cohort effect sizes was used to combine
results38. This established method eliminates any potential confounding caused by
between-cohort associations between FROH and traits.

Each cohort returned estimates and standard errors of: βFROH ,

βFSNP ; βFROH>Mb
; βFROH<Mb

; βF outsideROH; βFROH wSibs
, as well as trait means (ε′) and

standard errors within each of 10 FROH bins. The between-cohort mean of each of
these 16 estimates was then determined by fixed-effect, inverse-variance meta-
analysis using the R package metafor39. Results shown in Figs. 3–5 are meta-
analysed averages of the within-cohort effects.

The meta-analysis was also run for various subsets of cohorts, stratified by
ancestry as defined in Supplementary Data 18. Meta-analysis estimates from these
groupings are shown in Supplementary Fig. 1.

Median and 95% CI of a ratio. In the analyses of adoptees (Fig. 5c), siblings
(Fig. 5d) and potential confounders (Supplementary Figs. 10a, b) we wished to
compare the effect estimates (βFROH

) from two different methods across a wide
range of traits. The units of βFROH

differ by trait so, to allow comparison across all
traits, the unitless ratio of effect size estimates was calculated (for example
βFROH wSibs

: βFROH
). Figure 5c, d and Supplementary Figs. 10a, b show the medians

and 95% CI of these ratios. These were determined empirically by bootstrap since,
although formulae exist for the mean and standard error of a ratio40, the
assumption of normality is violated when βFROH

/se(βFROH
) is not large.

Genetic correlations in UK Biobank. Genetic correlations were calculated using
LD-Score Regression41, implemented in LDSC v1.0.0 (https://github.com/bulik/
ldsc). Summary statistics were parsed using default parameters in the LDSC
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‘munge_sumstats.py’ script, extracting only variants present in the HapMap 3
reference panel.

Accuracy of FROH measures of inbreeding effects. A recent paper suggested that
ROH may overestimate inbreeding effects by as much as 162%42; however, this
could only be the case if FROH underestimates excess homozygosity at the causal loci
by at least 162%. We do not believe this to be the case since the maximum FROH
measured in many cohorts is around 0.25 (the expectation in the offspring off first-
degree relatives), and the effect size estimates from these samples are consistent with
the overall estimates (Fig. 5c, d and Supplementary Fig. 9a–f). We note that Yengo
et al. applied the ROH calling parameters used here to imputed data. These para-
meters have been validated for called genotype data6 but not, to our knowledge, for
the higher SNP density and error rate of imputed data (see also Supplementary
Note 4). The simple method for detecting ROH used here was well suited to our
study, since it could be easily implemented on over one million samples, and most
of the variation in FROH is caused by easily-identified long ROH.43–45

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The meta-analysed data which support these findings are available as Supplementary
Data files. Cohort-level summary statistics underlying all figures and tables are available
in a publicly accessible dataset (https://doi.org/10.6084/m9.figshare.9731087). In the
majority of cases we do not have consent to share individual-level data, although for UK
Biobank this is available on request from https://www.ukbiobank.ac.uk/.
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1: Effect of FROH on height is robust to stratification by ancestral group. 
Cohorts were divided into eight broad ancestral groups (Supplementary Data Table 1) and meta-
analysed separately. Although some heterogeneity is observed (heterogeneity p-value = 3 x 10-4), 
𝛽𝐹ROH  is directionally consistent and differs significantly from 0 in all ancestral groups. All errors bars 
represent 95% confidence intervals. 
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Supplementary Figure 2: Effect of FROH on height is robust to stratification by inferred demographic 
history. Cohorts were divided by inferred demographic history (Supplementary Fig. 4, 
Supplementary Data Table 1) and meta-analysed separately. A small amount of heterogeneity is 
observed (heterogeneity p-value = 0.008), but 𝛽𝐹ROH  is directionally consistent and differs 
significantly from 0 in all groups. In particular, in the small effective population size cohorts, where 
the variation of FROH is believed to be caused variations in cryptic relatedness between parents, 
𝛽𝐹ROH  [-0.15, 95% CI -0.07 -0.23, p-value 3 x 10-4] is consistent with the global estimate. All errors 
bars represent 95% confidence intervals. 
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Supplementary Figure 3: A strong correlation (r=0.82, p-value = 9 x 10-103) is observed between 
𝝈𝑭𝐑𝐎𝐇and mean FROH. The standard deviation of FROH (𝜎𝐹ROH) is plotted against mean FROH for all 
cohorts. In regressions on FROH the statistical power is approximately proportional to 𝜎𝐹ROH

2   and 
cohorts with high mean FROH generally provide greater per-sample statistical power. Also, for a given 
mean FROH, cohorts where ROH are primarily attributable to consanguinity rather than small effective 
population size provide greater statistical power. 
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Supplementary Figure 4: Assignment of cohorts to one of four inferred demographic histories. Fig. 
2 is replicated (see also Fig. 2 legend) and used to empirically assign cohorts to one of four inferred 
demographic histories. In cohorts where FIS > 0.1, but the Cartesian distance to the 1:1 line was < 
0.005, consanguinity was inferred to be the main origin of ROH. Cohorts which had not been defined 
as consanguineous but had mean FROH > 0.02 were consider to have a small effective population. 
Cohorts with FIS > 0.1, but not consanguineous nor small effective population, were defined as 
admixed and the remaining cohorts were described as background. 
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Supplementary Figure 5: Effect of assortative mating on height and educational attainment (a): 
Linear decrease in height with increasing FROH but no decrease in a polygenic score for height. In 
black, average height (in metres) is plotted in bins of increasing FROH. In blue, averages of a polygenic 
risk score for height are plotted in the same bins. Increased FROH is not associated with decreased 
polygenic score for height, providing evidence against a hypothesis of assortative mating generating 
the relationship with height. (a): Decrease in education attained (EA) with increasing FROH but no 
decrease in a polygenic score for EA. In black, average EA (in years) is plotted in bins of increasing 
FROH. In blue, average polygenic risk score for EA are plotted in the same bins. Increased FROH is not 
associated with decreased polygenic score for EA, providing evidence against a hypothesis of 
assortative mating generating the relationship with EA. All errors bars represent 95% confidence 
intervals. 
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Supplementary Figure 6: Strong correlations between FROH and FSNP are observed in cohorts with 
high average FROH. The correlation between FROH and FSNP is plotted against mean FROH for all cohorts. 
In low autozygosity cohorts the correlation between FROH and FSNP is weak to moderate, as only a 
small fraction of homozygous SNPs is found in ROH. In contrast, in higher autozygosity cohorts, ROH 
represent a larger fraction of homozygous SNPs and the correlation between FROH and FSNP is 
stronger. 
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Supplementary Figure 7: Scatter plots of FROH plotted against FSNP and FGRM in a single cohort 
(VIKING). Scatter plots of three estimates of inbreeding coefficient (FROH, FSNP and FGRM) are shown in 
the upper right panels. The correlation between these estimates is shown in the lower left panels. 
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Supplementary Figure 8: A linear model approximation of the full logistic model gives relatively 
unbiased estimates of 𝜷𝑭𝐑𝐎𝐇. For all 22 binary traits analysed, estimates obtained from a two-step 
linear model approximation are plotted against estimates obtained from the full logistic model (See 
Methods). Estimates of 𝜷𝑭𝐑𝐎𝐇  are shown in grey. The 1:1 unity line is shown in red, and a linear 
least-squares fit is shown in black. The gradient of the best fit line (1.02 95% CI 0.99-1.02) does not 
differ significantly from the unbiased expectation of 1 (p-value 0.87). For all but one trait, the linear 
model approximation is consistent with the full logistic model estimate of 𝜷𝑭𝐑𝐎𝐇. Self-declared 
infertility has the most extreme case:control ratio (632:472544) of any of the binary traits analysed 
and for this trait only the linear model significantly overestimates 𝜷𝑭𝐑𝐎𝐇. The linear model estimates 
are therefore marked with an asterisk where they appear in Supplementary Data Tables 12-14, 16-
21. All errors bars represent 95% confidence intervals. 
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Supplementary Figure 9: Significant traits show a dosed response to increasing FROH. For all traits 
that reach experiment-wise significance in the meta-analysis, mean trait residuals are plotted in bins 
of increasing FROH (Methods) as also shown for height and Ever had children in Fig. 5a, b. Traits have 
been grouped into six categories (a) Anthropometry, (b) Cognition, (c) Reproduction, (d) Risk-taking 
behaviour, (e) Well-being/Frailty, (f) Blood. Although significant heterogeneity is observed for three 
traits (Height heterogeneity p-value = 7 x 10-8, Educational Attainment heterogeneity p-value = 2 x 
10-8, Number ever born heterogeneity p-value = 7 x 10-5) there is otherwise a dosed repose to 
increasing FROH for all traits. A dosed response across a wide range of FROH would be expected of a 
causal genetic effect, but not necessarily of environmental confounding. Although the effect of a 
confounder on a trait may be proportional, there is no a priori reason to expect a linear association 
between any confounder and FROH, especially extending to the large effects seen in very high FROH 
samples (FROH>0.18). All errors bars represent 95% confidence intervals. 
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Supplementary Figure 10: Effect of fitting potential confounders as covariates. (a) Educational 
Attainment. For all traits that reach significance in UK Biobank, the ratio of effect size estimates with 
Educational Attainment (EA) fitted as an additional covariate (𝛽𝐹ROH

+EA ) to the corresponding effect size 
estimates without EA (𝛽𝐹ROH ) are shown. The largest change is seen in Cognition (g) where fitting EA 
reduces 𝛽𝐹ROH  by 14.6%. However, since FROH is known to directly influence both g and EA, this 
change is not necessarily evidence of non-genetic effects. Overall fitting EA reduces the magnitude 
of 𝛽𝐹ROH  for 16 traits, but increases it for 9 traits, including number and likelihood of having children. 
(b) Religious participation. For the same traits (plus EA), the ratio of effect size estimates with a 
measure of religious participation (see Methods) fitted as an additional covariate (𝛽𝐹ROH

+R ) to the 
corresponding effect size estimates without religious participation (𝛽𝐹ROH) are shown. The largest 
reductions in 𝛽𝐹ROH  are seen for age at first sex (-12.7%) and number of sexual partners (-6.2%), 
suggesting that these traits may be partially confounded by social associations between FROH and 
religious beliefs. However, overall, fitting religious participation as a covariate increases 𝛽𝐹ROH  for 14 
of 26 traits, again including number and likelihood of having children. All errors bars represent 95% 
confidence intervals. 
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Supplementary Figure 11: Conditional effects of ROH < 5Mb and SNP homozygosity outside ROH. 
Multivariate models were run for all traits including 3 different measures for homozygosity: 
FSNP_OusideROH, FROH<5Mb and FROH>5Mb (See Methods). (a) Relative effect of ROH < 5Mb. The conditional 
effect of FROH<5Mb divided by 𝛽𝐹ROH  is shown for all significant traits. Across all traits, the meta-
analysed average of this ratio is 0.74 [95% CI 0.59-0.89, p-value 5 x 10-22, heterogeneity p-value 
0.132]. ROH of length less than 5 Mb are believed to be largely unconfounded by recent 
consanguinity, supporting the hypothesis that environmental confounding is responsible for only a 
small fraction (approximately 25%) of the reported effects. (b) Relative effect of SNP homozygosity 
outside ROH.  The conditional effect of FSNP_OusideROH divided by 𝛽𝐹ROH  is shown for all significant 
traits. Although there is some heterogeneity, as might be expected from different trait architectures, 
for all traits the effect of FSNP_OusideROH is significantly less than the effect of FROH. Averaging across all 
traits, the meta-analysed average of 𝛽𝐹SNP_OutsideROH : 𝛽𝐹ROH  is 0.12 [95% CI 0.04-0.20, p-value 2 x 10-

10, heterogeneity p-value 0.001], showing that ROH have a larger effect on inbreeding depression on 
complex traits than does common SNP homozygosity outside ROH. All errors bars represent 95% 
confidence intervals. 
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Supplementary Figure 12: Good correspondence between 𝑭𝐔𝐍𝐈 and 𝑭𝐑𝐎𝐇. For 141,774 British 
samples in UK Biobank 𝐹UNI, calculated from excess homozygosity of imputed genotypes, is plotted 
against 𝐹ROH, calculated from SNP array genotypes. A weighted linear regression line is shown in 
red. Because average inbreeding coefficients are low (𝐹̅ROH = 0.003 in this population), it is high 𝐹 
individuals who contribute most of the statistical power to estimates of 𝛽𝐹. Weighting the regression 
by an estimate of power contribution (𝐹𝑖

ROH − 𝐹̅ROH)2, we estimate 𝛽𝐹UNI,𝐹ROH = 1.05 and 𝑟2 =
0.997. The good correspondence between 𝐹UNI and 𝐹ROH suggests both have minimal bias in 
estimating 𝐹. 
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Supplementary Figure 13: Comparison of 𝑭𝐫𝐨𝐡 from imputed data and 𝑭𝐑𝐎𝐇 from SNP array 
genotypes. For 141,774 British samples in UK Biobank, 𝐹roh calculated from imputed genotypes is 
plotted against 𝐹ROH calculated from SNP array genotypes for three methods of imputed genotype 
preparation. In method 1, in red, uncertain genotypes are removed. In method 2, in blue, uncertain 
genotypes are set to missing and in method Yengo, in black, no genotype filtering is performed. 
Increasingly permissive treatments of uncertain genotypes introduce increasing downward bias in 
𝐹roh. Two high 𝐹ROH are highlighted in orange and further explored in Supplementary Figures 14a,b. 
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Supplementary Figure 14: Comparing ROH calling from SNP array genotypes and imputed dosages. 
For two high 𝐹ROH individuals, the locations of called ROH are compared for two methods. The 
method shown in blue calls ROH from SNP array genotypes using the parameters used in Joshi et al. 
(2015). The method shown in red calls ROH from hard called imputed dosages following the method 
described in Yengo et al (2017). In both individuals the long ROH detected in SNP array genotypes, 
and which are thought to be autozygous segments, are broken up in the imputed data method by 
the presence of miscalled heterozygotes. (a) Individual with 𝑭𝐑𝐎𝐇 = 𝟎. 𝟐𝟔𝟏 thought to be offspring 
of first-degree relatives. (b) Individual with 𝑭𝐑𝐎𝐇 = 𝟎. 𝟎𝟔𝟐𝟔 thought to be offspring of third-
degree relatives. 
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Supplementary Figure 15: Comparing effect estimates from bivariate models to the equivalent 
univariate estimates. For all significant traits, effect estimates were obtained from bivariate models 
of 𝑇𝑟𝑎𝑖𝑡 ~ 𝐹ROH + 𝐹GRM and compared to univariate estimates from the model 𝑇𝑟𝑎𝑖𝑡 ~ 𝐹ROH. (a) 

Ratio of 𝜷𝑭𝐑𝐎𝐇|𝑭𝐆𝐑𝐌 to 𝜷𝑭𝐑𝐎𝐇. For all significant traits the ratio 
𝜷𝑭𝐑𝐎𝐇|𝑭𝐆𝐑𝐌

𝜷𝑭𝐑𝐎𝐇
 is plotted. A meta-analysis 

across all traits gives an average ratio of 0.78 [95% CI 0.71-0.86]. (b) Ratio of 𝜷𝑭𝐆𝐑𝐌|𝑭𝐑𝐎𝐇  to 𝜷𝑭𝐑𝐎𝐇. 

For all significant traits the ratio 
𝜷𝑭𝐆𝐑𝐌|𝑭𝐑𝐎𝐇

𝜷𝑭𝐑𝐎𝐇
 is plotted. A meta-analysis across all traits gives an 

average ratio of 0.12 [95% CI 0.10-0.15]. All errors bars represent 95% confidence intervals. 
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16b 

 

Supplementary Figure 16: Univariate relationships between estimates of inbreeding coefficient 
(𝑭𝐑𝐎𝐇, 𝑭𝐆𝐑𝐌) and the excess homozygosity at specific allele frequencies. The excess homozygosity 
of SNPs at seven allele frequencies (𝐹MAF) was calculated for 402,559 genetically British samples in 
the phase 2 UKB imputation. (a) Effect estimates of 𝑭𝐑𝐎𝐇 and 𝑭𝐆𝐑𝐌 on 𝑭𝐌𝐀𝐅. Univariate models of 
𝐹MAF~𝐹ROH and 𝐹MAF~𝐹GRM were fitted at each allele frequency. A one unit increases in 𝐹ROH is 
associated with a one unit increase in 𝐹MAF across all allele frequencies. In contrast, the slope of 
𝛽𝐹MAF,𝐹GRM  is downwardly biased at all allele frequencies. (b) Correlations between of 𝑭𝐑𝐎𝐇, 𝑭𝐆𝐑𝐌 
and 𝑭𝐌𝐀𝐅. Univariate models of 𝐹MAF~𝐹ROH and 𝐹MAF~𝐹GRM were fitted at each allele frequency. 
Despite the downward bias of its effect estimate, 𝐹GRM is more strongly correlated with 𝐹MAF at 
most allele frequencies. 
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SUPPLEMENTARY  TABLES 

Supplementary Table 1: Genetic correlations between risk and reproductive traits. Genetic 
correlations estimated in UKB by LD score regression and their corresponding p-values. 5 
reproductive traits and 4 risk traits are shown. The sign of age at first sex has been reversed so that 
larger trait values are associated with higher reproductive output. Positive correlations are shown in 
blue, with darker shades signifying Bonferroni-corrected significance. Unsurprisingly, positive genetic 
correlations are found within the groups of risk and reproductive success but, perhaps more 
unexpectedly, the genetic correlations between risk and reproductive traits are also most often 
positive. This is particularly true for smoking and self-declared risk taking. 

Ever had 
children 

Number 
of 
children 

Earlier 
age at 
first sex 

Number 
of sexual 
partners 

Alcohol 
units 

Ever 
smoked 

Driving 
speed 

Number of 
children 

Rg 0.93 

P 0 

Earlier age at first 
sex 

Rg 0.57 0.53 

P 3E-175 2E-200 

Number of sexual 
partners 

Rg 0.08 0.10 0.52 

P 1E-02 1E-03 2E-168 

Alcohol units 
Rg 0.15 0.11 0.14 0.37 

P 5E-02 1E-01 1E-02 7E-07 

Ever smoked 
Rg 0.27 0.28 0.60 0.49 0.37 

P 4E-26 2E-30 0 1E-119 3E-08 

Driving speed 
Rg 0.00 0.03 0.01 0.29 0.2192 0.14 

P 1 0.40 0.80 8E-24 2E-03 3E-07 

Self-declared risk 
taking 

Rg 0.23 0.27 0.42 0.57 0.28 0.33 0.39 

P 5E-11 2E-16 9E-77 2E-137 3E-04 5E-46 3E-41 
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Supplementary Table 2: Number of SNPs extracted from UKB imputation by allele frequency. The 
excess homozygosity of SNPs at seven allele frequencies (𝐹MAF) was calculated for 402,559 
genetically British samples in the phase 2 UKB imputation. The number of SNPs used at each 
frequency is shown. 

MAF 

Number of SNPs 
used in 

calculation of 
F_MAF 

0.01 84835 
0.025 122498 

0.05 198310 
0.1 261504 
0.2 369777 
0.4 253826 
0.5 301191 

 

 

SUPPLEMENTARY NOTE 1: Trait descriptions 

45 quantitative traits were initially chosen for analysis in a potentially wide range of cohorts from 
the ROHgen consortium. During the initial meta-analysis of these traits, the full release of >500,000 
samples from UK Biobank (UKB) became available and, it was decided to include a further 55 less-
commonly measured traits available in UKB. Of these new traits, 21 were binary, requiring an 
extension to the existing analysis plan. 7 of the UKB traits were also measured in some ROHgen 
cohorts and were thus analysed in a subset of ROHgen cohorts willing to rerun the new analysis plan. 
In summary, a total of 100 complex traits were analysed; 45 in a potentially wide range of ROHgen 
cohorts, 7 in a subset of ROHgen cohorts and 48 in UKB only. All are defined below, under headings 
in the format short name – full name – units. 

afb - Age at first birth – years. Age of subject (either male or female) when their first child was born. 
Nulliparous samples and reported ages less than 12 or greater than 80 were excluded. 

afb_men - Age at first birth (men) – years. Men only. Unlike most other traits, age at first birth was 
treated as a separate trait for men and women, and the full set of analyses was therefore performed 
on both sexes separately. Age at first birth (men) is the age of a male subject when their first child 
was born. Nulliparous samples and reported ages less than 12 or greater than 80 were excluded. 

afb_women - Age at first birth (women) – years. Women only. Unlike most other traits, age at first 
birth was treated as a separate trait for men and women, and the full set of analyses was therefore 
performed on both sexes separately. Age at first birth (women) is the age of a female subject when 
their first child was born. Nulliparous samples and reported ages less than 12 or greater than 60 
were excluded. 

age_menarche - Age at menarche – years. Women only. Reported age at menarche. Women with 
age at menarche less than 5 or greater than 25 were excluded. 

age_menopause - age at menopause (years). Women only. Age at natural menopause. Women 
whose menopause was due to surgical operations (hysterectomy/ovariectomy), cancer treatment 
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(radiation, chemotherapy) or on HRT before menopause were excluded. Responses below 35 or 
greater than 70 were also excluded. 

birth_weight – Birth weight – kg. Individual’s own weight at birth. Participants who were known to 
be part of a multiple birth (twins, triplets, etc.) were set to NA. Values less than 0.5 kg or greater 
than 7 kg were excluded. 
bmi – Body mass index – kgm-2. Weight in kilograms divided by height in metres squared. Values 
less than 10 or greater than 150 were excluded. 

dp_dia – Diastolic blood pressure – mmHg. Averaged readings taken during a single session. 
Guidance was to take the unweighted mean of second and third readings although cohorts were 
given discretion to use best judgement where appropriate. Participants known to be on 
hypertension medication had 10mmHg added to their readings. Values less than 20 or greater than 
200 were excluded. 

bp_sys – Systolic blood pressure – mmHg. Averaged readings taken during a single session. 
Guidance was to take the unweighted mean of second and third readings although cohorts were 
given discretion to use best judgement where appropriate. Participants known to be on 
hypertension medication had 15mmHg added to their readings.  Values less than 50 or greater than 
300 were excluded. 

edu – Education Attained – years. Based on SSGAC, Education Attained was defined in accordance 
with the ISCED 1997 classification(UNESCO), relating to seven categories of educational attainment 
that are internationally comparable. Subjects age <30 were excluded as were values ∉ 
{1,7,10,13,15,19,22}. 

Definition US years of schooling 
Pre-primary education 

 1 

Primary education or first stage of basic education 7 
Lower secondary or second stage of basic education 10 

(Upper) secondary education 13 
Post-secondary non-tertiary education 15 

First stage of tertiary education (not leading directly to an 
advanced research qualification) 19 

Second stage of tertiary education (leading directly to an 
advanced research qualification e.g. PhD) 22 

 

fev1 – Forced expiratory volume in 1 second – Litres. Where multiple blows were available the 
maximum valid reading was used. Values less than 0 or greater than 10 were excluded. 

fev1perfvc – Forced expiratory volume in 1 second / forced vital capacity – no units. Values less 
than 0 or greater than 15 were excluded. 

fpg – Fasting plasma glucose – mmolL-1. Known diabetic subjects were excluded, as were subjects 
with fpg > 7 or hba1c > 6.5. Measurements made in whole blood (not plasma) were multiplied by 
1.13 to estimate fpg. 

g – Cognitive g – z-score. The first unrotated principal component of three or more tests of different 
domains of cognition. Care was taken to ensure this was in the direction of larger values being 
associated with greater cognition. Specifically, the sign of the correlation between Cognitive g and 
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Education attained was ensured to be positive in all cohorts. This trait was rank-normalised and 
values less than -10 or greater than 8 were excluded. 

hb – Haemoglobin – gL-1. Concentration of haemoglobin. Values less than 0 or greater than 500 were 
set to NA. 

hba1c – Glycosylated haemoglobin – % of hb (DCCT)2. Set to NA for known diabetics and all subjects 
for whom HbA1c > 6.5 or fpg > 7. Also, set to NA for subjects with known major blood abnormalities 
(thalassaemia, sickle cell anaemia, etc.), subjects who have had a blood transfusion in the previous 3 
months. 

hdl – High-density lipoprotein cholesterol – mmolL-1. Taken only from fasted or semi-fasted 
subjects. If semi-fasted a covariate specifying fasting time was required. Values greater than 5.17 
were set to NA. 

height – Height – meters. Standing height in meters. Values less than 1.2 or greater than 2.5 were 
set to NA. 

hr – Heart rate – beats per minute. Participants on cardiac medications (Beta blockers, 
antiarrhythmics) were exclude as were those with previous myocardial infarction or heart failure. 
Values less than 20 or greater than 150 were set to NA. 

ldl – Low-density lipoprotein cholesterol – mmolL-1. Taken only from fasted or semi-fasted subjects. 
If semi-fasted a covariate specifying fasting time was required. If HDL cholesterol, total cholesterol 
and Triglycerides were all provided, LDL cholesterol was calculated using Friedewald’s equation. 
Alternatively, LDL cholesterol could be supplied if directly measured. Samples known to be on lipid 
lowering medication were adjusted by dividing by a factor of 0.7. Values less than 0 or greater than 
10.34 were set to NA. 

log.egfr – Estimated glomerular filtration rate – mLmin-11.73m-2. Glomerular filtration rate was 
estimated from measured creatinine (in mgdL-1) using the formula 186*creatinine-1.154*age-0.203. In 
cohorts with African or African-American ancestry these values were multiplied by a correction 
factor of 1.21. Values of creatinine greater than 20 or eGFR greater than 200 were set to NA. 

log.fast_ins – Fasting insulin – pmolL-1. Known diabetic samples, as well as samples with fpg > 7 or 
HbA1c < 6.5 were excluded. Values of fasting insulin greater than 1000 were set to NA. 

log.fibrinogen – Fibrinogen – gL-1. Plasma fibrinogen levels. Values greater than 20 were set to NA. 

log.hscrp – high sensitivity C-reactive protein – nmolL-1. Serum levels of C-reactive protein (CRP) 
detected with high sensitivity systems (lower detection limit around 1 nmolL-1). Samples known to 
be on anti-inflammatory drugs (ATC codes L01, L03, L04, L02A, L02B) were set to NA, as were values 
greater than 952 nmolL-1. 

log.il6 – Interleukin-6 – pgmL-1. Serum levels of Interleukin-6. Samples known to be on anti-
inflammatory drugs (ATC codes L01, L03, L04, L02A, L02B) were set to NA, as were values greater 
than 100 pgmL-1. 

log.lymphoc – Lymphocytes – %. Percentage of lymphocytes per white blood cell count. Values 
greater than 100 were set to NA. 

log.mpv – Mean platelet volume – fL. Mean platelet volume in femtolitres. Values greater than 30 
were set to NA. 
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log.tnfa – Tumour necrosis factor alpha – pgmL-1. Samples known to be on anti-inflammatory drugs 
(ATC codes L01, L03, L04, L02A, L02B) were set to NA, as were values greater than 100 pgmL-1. 

log.triglyc – Triglycerides – mmolL-1. Taken only from fasted or semi-fasted subjects. If semi-fasted a 
covariate specifying fasting time was required. Values of Triglycerides greater than 33.9 mmolL-1 
were set to NA. 

log.wbc – White blood cell count – 109 per Litre. Values greater than 30 x 109 per Litre were 
excluded. 

log10.alt – Alanine transaminase – IUper Litre. Plasma concentrations of Alanine transaminase (also 
called Glutamic-pyruvate transaminase). Values greater than 500 IU per Litre were set to NA. 

log10.ggt – Gamma-Glutamyl Transferase – IU per Litre. Plasma concentrations of Gamma-Glutamyl 
Transferase. Values greater than 1000 IU per Litre were set to NA. 

monoc –  Monocytes - %. Percentage of monocytes in white blood cell count. Values greater than 40 
were set to NA. 

neb –  Number ever born – count. Number of children the subject has brought into being. Subjects 
aged less than 45 were excluded from this analysis.  

neb_men –  Number ever born (men) – count. Men only. Unlike most other traits, number ever 
born was treated as a separate trait for men and women, and the full set of analyses was therefore 
performed on both sexes separately. Number ever born (men) is the number of children fathered by 
a male subject. Subjects aged less than 45 were excluded from this analysis. 

neb_women –  Number ever born (women) – count. Women only. Unlike most other traits, number 
ever born was treated as a separate trait for men and women, and the full set of analyses was 
therefore performed on both sexes separately. Number ever born (women) is the number of 
children given birth to by a female subject. Subjects aged less than 45 were excluded from this 
analysis. 

plt –  Platelet count - 109 per Litre. Platelet count in whole blood. Values less than 20 or greater than 
1000 were set to NA. 

pr –  PR interval – ms. Electrocardiographic PR interval. Participants on cardiac medications (Beta 
blockers, antiarrhythmics) were exclude as were those with previous myocardial infarction or heart 
failure. Values less than 80 or greater than 320 were set to NA. 

qrs –  QRS duration – ms. Electrocardiographic QRS duration. Participants on cardiac medications 
(Beta blockers, antiarrhythmics) were exclude as were those with previous myocardial infarction or 
heart failure. Values less than 30 or greater than 120 were set to NA. 

qt –  QT interval – ms. Electrocardiographic QT interval. Participants on cardiac medications (Beta 
blockers, antiarrhythmics) were exclude as were those with previous myocardial infarction or heart 
failure. Values less than 200 or greater than 700 were set to NA. 

ser –  Spherical equivalent refraction – no units. The mean of left and right eyes calculated from 
spherical and cylindrical power of each eye by the standard formula ser = sphere + 0.5*cylinder. 
Samples known to have had eye surgery were set to NA, as were values less than -15 or greater than 
+15. 
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tot_chol – Total cholesterol – mmolL-1. Taken only from fasted or semi-fasted subjects. If semi-
fasted a covariate specifying fasting time was required. Samples known to be on lipid lowering 
medication were adjusted by dividing by a factor of 0.8. Values greater than 16.8 molL-1 were set to 
NA. 

uric – Uric acid – umolL-1. Serum urate concentration. Values greater than 1190 umolL-1 were set to 
NA. 

weight – Weight – kg. Weight in kilograms. Values less than 20 kg or greater than 250 kg were set to 
NA. 

whr – Waist : Hip ratio – no units. Calculated when both waist and hip circumference were available 
in centimetres. Values of waist or hip circumference less than 20 or greater than 300 were set to NA, 
as were values of waist : hip ratio less than 0.3 or greater than 2. 

alcohol_units - Alcohol units per week – UK units per week. Self-declared alcohol consumption in 
UK units (10 ml of ethanol) per week. Where necessary this was estimated from alcohol intake 
frequency and average drink sizes. Values were capped to 100 units per week. 

ever_married_glm – Ever married – TRUE/FALSE. Subjects who were known to be (or have been) 
married or in a long-term cohabiting relationship were encoded as 1 while all others were encoded 
as 0. 

ever_smoked_glm – Ever smoked – TRUE/FALSE. Subjects who reported either being current 
smokers or having previously smoked on all or most days were encoded as 1, while those who had 
never or only occasionally smoked were encoded as 0. 

neb_parous –  Number ever born (parous) – count. In samples with one or more children, number 
ever born (parous) is equal to number of children ever born (neb). All other samples are set to NA. 

parous_glm –  Ever had children – TRUE/FALSE. For all samples with a non-missing value of number 
ever born (neb) a trait was defined with value 1 for samples with neb>0 and value 0 for samples with 
neb=0. 

parous_married_glm –  Ever had children (married) – TRUE/FALSE. Ever had children defined only 
for samples for whom ever married = 1. Set to NA for all samples where ever married is 0 or NA. 

parous_unmarried_glm –  Ever had children (unmarried) – TRUE/FALSE. Ever had children defined 
only for samples for whom ever married = 0. Set to NA for all samples where ever married is 1 or NA. 

age_at_first_sex – Age at first sex – years. Response to the question What was your age when you 
first had sexual intercourse? Participants who declined to answer, or who gave an answer less than 3 
were excluded. Participants who answered Never had sex were set to their current age. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2139. 

age_facial_hair – Relative age of facial hair – index. Men only. Response to the question When did 
you start to grow facial hair?. Participants were given five options: Younger than average, About 
average age, Older than average, Do not know and Prefer not to answer which were encoded -1, 0, 
1, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2375. 

age_voice_broke – Relative age voice broke – index. Men only. Response to the question When did 
your voice break?. Participants were given five options: Younger than average, About average age, 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2139
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2375
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Older than average, Do not know and Prefer not to answer which were encoded -1, 0, 1, NA and NA 
respectively. For more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2385. 

alb – Age at last birth – years.Women only. Response to the question How old were you when you 
had your LAST child?. Responses less than 8 or greater than 65 were excluded. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2764. 

ankle_width – Mean ankle width – mm. Average of left and right ankle width as measured by the 
spacing between measurement transducer pads on each heel. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4100. 

any_pain_glm – Any reported pain – TRUE/FALSE. Participants were asked the question In the last 
month have you experienced any of the following that interfered with your usual activities? (You can 
select more than one answer) and given ten options: Headache, Facial pain, Neck or shoulder pain, 
Back pain, Stomach or abdominal pain, Hip pain, Knee pain, Pain all over the body, None of the above 
and Prefer not to answer. Participants who selected any of the first eight options were coded as 1, 
those who selected only None of the above were coded as 0 and the remainder were treated as NA. 
For more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159. 

any_same_sex_glm – Any same-sex partners – TRUE/FALSE. Participants were asked the question 
Have you ever had sexual intercourse with someone of the same sex? and given the options Yes, No 
and Prefer not to answer which were encoded 1, 0 and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=100352. 

back_pain_glm – Backpain – TRUE/FALSE. Participants were asked the question In the last month 
have you experienced any of the following that interfered with your usual activities? (You can select 
more than one answer) and given ten options: Headache, Facial pain, Neck or shoulder pain, Back 
pain, Stomach or abdominal pain, Hip pain, Knee pain, Pain all over the body, None of the above and 
Prefer not to answer. Participants who selected Back pain were coded as 1, those who selected only 
Prefer not to answer were coded as NA and the remainder set to 0. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159. 

baldness – Baldness pattern – index. Men only. Male participants were asked the question Which of 
the following best describes your hair/balding pattern? and shown four images of increasing hair loss 
(patterns 1 to 4). Responses were coded 1 to 4, where 4 represents most hair loss. For more details 
see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2395. 

body_pain_glm – Whole body pain – TRUE/FALSE. Participants were asked the question In the last 
month have you experienced any of the following that interfered with your usual activities? (You can 
select more than one answer) and given ten options: Headache, Facial pain, Neck or shoulder pain, 
Back pain, Stomach or abdominal pain, Hip pain, Knee pain, Pain all over the body, None of the above 
and Prefer not to answer. Participants who selected Pain all over the body were coded as 1, those 
who selected only Prefer not to answer were coded as NA and the remainder set to 0. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159. 

broken_bones_glm – Broken bones – TRUE/FALSE. Participants were asked the question Have you 
fractured/broken any bones in the last 5 years? and given the options Yes, No, Do not know and 
Prefer not to answer which were encoded 1, 0, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2463. 

cancer_diagnosis_glm – Cancer diagnosis – TRUE/FALSE. Participants were asked the question Has 
a doctor ever told you that you have had cancer? and given the options Yes, No, Do not know and 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2385
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2764
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4100
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159
http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=100352
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2395
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2463
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Prefer not to answer which were encoded 1, 0, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2453. 

dead_glm – Dead – TRUE/FALSE. Death records in UKB are periodically updated by linkage to 
national death registries. At data download on 13/12/2017, 13739 participants had record dates of 
death and were thus encoded at 1. Those without a death register entry were encoded as 0. For 
more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=40000. 

depression_glm – Self-reported mood disorder – TRUE/FALSE. Participants were asked the question 
Have you ever seen a general practitioner (GP) for nerves, anxiety, tension or depression? and given 
the options Yes, No, Do not know and Prefer not to answer which were encoded 1, 0, NA and NA 
respectively. For more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2090. 

diabetes_diagnosis_glm – Diabetes diagnosis – TRUE/FALSE. Participants were asked the question 
Has a doctor ever told you that you have diabetes? and given the options Yes, No, Do not know and 
Prefer not to answer which were encoded 1, 0, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2443. 

facial_ageing – Facial ageing – index. Participants were asked the question Do people say that you 
look: and given the options Younger than you are, Older than you are, About your age, Do not know 
and Prefer not to answer which were encoded -1, 1, 0, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1757. 

family_satisfaction – Family satisfaction – index. Participants were asked the question In general 
how satisfied are you with your family relationships? and given the options Extremely happy, Very 
happy, Moderately happy, Moderately unhappy, Very unhappy, Extremely unhappy, Do not know 
and Prefer not to answer which were encoded 6, 5, 4, 3, 2, 1, NA and NA respectively. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4559. 

fat_pc – Body fat percentage – %. Body composition estimated by impedance measurement. Values 
less than 1% or greater than 75% were excluded. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23099. 

financial_satisfaction – Financial satisfaction – index. Participants were asked the question In 
general how satisfied are you with your financial situation? and given the options Extremely happy, 
Very happy, Moderately happy, Moderately unhappy, Very unhappy, Extremely unhappy, Do not 
know and Prefer not to answer which were encoded 6, 5, 4, 3, 2, 1, NA and NA respectively. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4581. 

grip_strength – Grip strength – kg. Average of left and right hand grip strength as measured by a 
hydraulic hand dynamometer. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=46. 

handedness – Left-handed – index. Participants were asked the question Are you right or left 
handed? and given the options Right-handed, Left-handed, Use both right and left hands equally and 
Prefer not to answer which were encoded -1, 1, 0 and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1707. 

happiness – Self-reported happiness – index. Participants were asked the question In general how 
happy are you? and given the options Extremely happy, Very happy, Moderately happy, Moderately 
unhappy, Very unhappy, Extremely unhappy, Do not know and Prefer not to answer which were 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2453
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=40000
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2090
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2443
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1757
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4559
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23099
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4581
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=46
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1707


35 
 

encoded 6, 5, 4, 3, 2, 1, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20458. 

headache – Headaches – TRUE/FALSE. Participants were asked the question In the last month have 
you experienced any of the following that interfered with your usual activities? (You can select more 
than one answer) and given ten options: Headache, Facial pain, Neck or shoulder pain, Back pain, 
Stomach or abdominal pain, Hip pain, Knee pain, Pain all over the body, None of the above and 
Prefer not to answer. Participants who selected Headache were coded as 1, those who selected only 
Prefer not to answer were coded as NA and the remainder set to 0. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6159. 

health_satisfaction – Health satisfaction – index. Participants were asked the question In general 
how satisfied are you with your health? and given the options Extremely happy, Very happy, 
Moderately happy, Moderately unhappy, Very unhappy, Extremely unhappy, Do not know and Prefer 
not to answer which were encoded 6, 5, 4, 3, 2, 1, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4548. 

hearing_acuity – Hearing acuity – no units. Mean of left and right ear Speech Reception Threshold 
(SRT), defined here as the signal-to-noise ratio at which half of the presented speech can be 
understood correctly. This value was multiplied by -1 so that larger values correspond to better 
hearing. For more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20019. 

heelbone_density – Heelbone density – Z-score. Mean of left and right heelbone density T-score 
calculated from an ultrasound heel Bone Mineral Density measurement and normalised within each 
sex. For more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4106. 

infertility_self_declared_glm – Self-reported infertility – TRUE/FALSE. UKB participants were asked 
in a verbal interview with a trained nurse to describe any serious illness or disabilities. Responses 
were classified in a tree-structured list used by clinic nurses to code non-cancer illnesses. The values 
1403 and 1404 correspond to female and male infertility respectively and participants with these 
either of these responses were encoded 1. All other participants who completed the verbal 
interview were encoded 0. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002. 

irritability_glm – Self-reported irritability – TRUE/FALSE. Participants were asked the question Are 
you an irritable person? and given the options Yes, No, Do not know and Prefer not to answer which 
were encoded 1, 0, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1940. 

job_satisfaction – Job satisfaction – index. Participants were asked the question In general how 
satisfied are you with the work that you do? and given the options Extremely happy, Very happy, 
Moderately happy, Moderately unhappy, Very unhappy, Extremely unhappy, Do not know and Prefer 
not to answer which were encoded 6, 5, 4, 3, 2, 1, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4537. 

match_time – Reaction time – ms. Participants were shown two cards at a time on a touchscreen 
and instructed to press a button as quickly as possible when the symbols on the cards match. This 
field is the mean duration to first press of snap-button summed over rounds in which both cards 
matched. It gives a crude measure of the raw processing + reaction speed of a participant. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20023. 
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memory – Memory – count. The participant was shown a 2-digit number to remember. The number 
then disappeared and after a short while they were asked to enter the number onto the screen. The 
number became one digit longer each time they remembered correctly (up to a maximum of 12 
digits). This trait is the longest number correctly recalled during the numeric memory test. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4282. 

miscarriage – Miscarriage – TRUE/FALSE. Women only. Female participants were asked the 
question Have you ever had any stillbirths, spontaneous miscarriages or terminations? and given the 
options Yes, No, Do not know and Prefer not to answer which were encoded 1, 0, NA and NA 
respectively. For more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2774. 

moderate_activity – Frequency of moderate activity – count. Participants were asked the question 
In a typical week, on how many days did you do 10 minutes or more of moderate physical activities 
like carrying light loads, cycling at normal pace? (Do not include walking). Values less than 0 or 
greater than 7 were rejected. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=884. 

moody_glm – Moody – TRUE/FALSE. Participants were asked the question Does your mood often go 
up and down? and given the options Yes, No, Do not know and Prefer not to answer which were 
encoded 1, 0, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1920. 

motorway_speeding – Driving speed – index. Participants were asked the question How often do 
you drive faster than the speed limit on the motorway? and given the options Never/rarely, 
Sometimes, Often, Most of the time ,Do not drive on the motorway,  Do not know and Prefer not to 
answer which were encoded 0, 1, 2, 3, NA, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1100. 

neuroticism – Neuroticism – index. An externally derived summary score of neuroticism, based on 
12 neurotic behaviour domains reported in UKB. Values range from 0 to 12 with higher scores 
corresponding to increased neurotic behaviour. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20127. 

number_sexual_partners – Number sexual partners – count. Participants were asked the question 
About how many sexual partners have you had in your lifetime?. Subjects who answered Do not 
know or Prefer not to answer were set to NA, otherwise values were capped at 100. For more details 
see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2149. 

overall_health – Self-reported overall health – index. Participants were asked the question In 
general how would you rate your overall health? and given the options Excellent, Good, Fair, Poor, 
Do not know and Prefer not to answer which were encoded 3, 2, 1, 0, NA and NA respectively. For 
more details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2178. 

pacemaker_glm – Pacemaker – TRUE/FALSE. Participants were asked by an interviewer if they have 
a pace-maker before the body impedance measures. Those that answered Yes were encode 1, 
otherwise 0. http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=3079. 

pgrs_edu – Polygenic score for Education Attained – years. A polygenic score for Education 
Attained (EA) calculated from 159 genome-wide significant SNPs reported in a GWAS of Education 
Attained [Okbay et al. 2016] and imputed in UKB using the UK10K + 1000 Genomes panel. This 
polygenic score explains 0.9% of the residual variance of EA in the UKB British cohort after 
conditioning on sex and age. 
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pgrs_height – Polygenic score for Height – metres. A polygenic score for height calculated from 697 
genome-wide significant SNPs reported in a GWAS of height [Wood et al. 2014] and imputed in UKB 
using the UK10K + 1000 Genomes panel. This polygenic score explains 18.7% of the residual variance 
of height in the UKB British cohort after conditioning on sex and age. 

potassium – Urinary Potassium – mML-1. Potassium in urine measured by ISE (ion selective 
electrode) analysis on a Beckman Coulter AU5400. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30520. 

risk_glm – Self-reported risk taker – TRUE/FALSE. Participants were asked the question Would you 
describe yourself as someone who takes risks? and given the options Yes, No, Do not know and Prefer 
not to answer which were encoded 1, 0, NA and NA respectively. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2040. 

sleep_duration – Sleep duration – hours. Participants were asked the question About how many 
hours sleep do you get in every 24 hours? (please include naps). Subjects who answered Do not know 
or Prefer not to answer were set to NA, as were values less than 1 or greater than 23. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=1160. 

sodium – Urinary Sodium – mML-1. Sodium in urine measured by ISE (ion selective electrode) 
analysis on a Beckman Coulter AU5400. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30530. 

vigorous_activity – Frequency of vigorous activity – count. Participants were asked the question In 
a typical week, how many days did you do 10 minutes or more of vigorous physical activity? (These 
are activities that make you sweat or breathe hard such as fast cycling, aerobics, heavy lifting). 
Values less than 0 or greater than 7 were rejected. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=904. 

visual_acuity – Visual acuity –  negative log(MAR). Mean of left and right visual acuity as defined by 
the smallest size letters that can be reliably identified at a 4 metres. The UK Biobank system is based 
on a traditional LogMar chart. This log(MAR) value was multiplied by -1 so that larger values 
correspond to better vision. For more details see 
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=5201. 

walking_pace – Walking pace – index. Participants were asked the question How would you describe 
your usual walking pace? and given the options Slow pace, Steady average pace, Brisk pace, None of 
the above and Prefer not to answer which were encoded 0, 1, 2, NA and NA respectively. For more 
details see http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=924. 
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SUPPLEMENTARY NOTE 4: Comparison of inbreeding coefficient estimates 

Introduction. Accurate estimation of the Inbreeding Depression (𝛽𝐹) requires precise and unbiased 
estimates of individual inbreeding coefficients (𝐹). Numerous methods have been proposed for 
estimating inbreeding coefficients from dense SNP marker data. Broadly, these can be grouped into 
two categories: methods that consider the excess homozygosity at a large number of, preferably 
independent, markers (e.g. 𝐹HOM, 𝐹UNI) and methods that identify autozygous genomic segments 
from unbroken tracts of homozygous genotypes, which are unlikely to occur by chance (e.g. 𝐹ROH).  

To maximize statistical power and minimize bias in 𝛽̂𝐹, an estimator of 𝐹 should be both unbiased, 
(𝐸[𝐹̂] = 𝐹) and precise, 𝑀𝑆𝐸(𝐹̂ − 𝐹) ≪ 𝑣𝑎𝑟(𝐹). Extensive comparisons of different estimators 
have been made by previous studies. Many of these conclude that 𝐹ROH calculated from 
appropriately parameterized ROH calling gives estimates of 𝐹 with minimal bias and lower variance 
than independent SNP methods1–4. In contrast, Yengo et al. (PNAS 2017) claim that 𝛽̂𝐹ROH  may be 
upwardly biased by as much as 162%, and provide apparent evidence of this in both simulated and 
real data5. Furthermore, Yengo et al. show, in both theory and simulation, that two independent SNP 
methods (𝐹UNI and 𝐹HOM) give unbiased estimates of 𝛽𝐹 when causal SNPs are a random subset of 
all genotyped SNPs. This would cast doubt on the validity of using 𝐹ROH to estimate 𝛽𝐹, and suggests 
𝐹UNI might be a more appropriate measure. To understand the apparent contradictions between 
different studies, we have repeated and extended the investigations described in Yengo et al. 

Yengo et al. base their study on genotype data derived from the first phase of the UK Biobank (UKB) 
imputation. 9,493,148 SNPs with a minor allele frequency (MAF) of >1%, INFO score of > 0.3 and 
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HWE p-value > 1e-06 were selected from the imputation of 140,720 British individuals. SNP dosages 
were rounded to the nearest whole genotype and LD pruning r2> 0.9 was performed to reduce the 
number of SNPs to 3,857,369. 𝐹UNI was calculated by the formula presented by Yang et al. (2011)6 as 
𝐹̂𝐼𝐼𝐼 (implemented in PLINK7 by parameters --ibc Fhat3) and ROH were called by two PLINK 
parameterizations, including the values proposed in Joshi et al. (2015)8. Joshi et al. validated the 
PLINK parameters for moderately dense SNP chips, but not for the different characteristics (SNP 
density, error rate) of genotypes called from imputed dosages. In particular, the PLINK method 
allows only one heterozygote or 5 missing genotypes within each ROH. 

𝑭𝐑𝐎𝐇 calculated from SNP chip genotypes agrees well with 𝑭𝐔𝐍𝐈 indicating minimal bias. 
We followed the method described in Yengo et al. to calculate both 𝐹UNI and 𝐹ROH from the UKB 
imputation, but initially compared Yengo’s 𝐹UNI to our 𝐹ROH calculated from SNP chip data available 
for the same phase one individuals. From now on, we use lowercase roh to refer to measures based 
on imputed data and uppercase ROH to refer to those from SNP-chip genotypes. We find good 
correspondence between 𝐹UNI and 𝐹ROH (Supplementary Fig. 12). Since 𝐹UNI is believed to be an 
unbiased estimator of 𝐹, the correspondence between 𝐹UNI and 𝐹ROH places limits on the possible 
bias of 𝐹ROH. Specifically, if we model 𝐹ROH as  𝐹𝑖

ROH = 𝛩𝐹𝑖 +  𝜖𝑖, then  

𝑟2

𝛽𝐹UNI,𝐹ROH

≤  𝛩 ≤  
1

𝛽𝐹UNI,𝐹ROH

                                                      (19) 

(see Supplementary note 6). Substituting the regression values from Supplementary Fig. 12 gives 
0.94 ≤  𝛩 ≤ 0.95. I.e. the good correspondence between 𝐹UNI and 𝐹ROH limits the potential error in 
𝐹ROH to a small downward bias. This very small underestimate of 𝐹 may be caused by autozygosity 
not captured in 𝐹ROH, namely ROH of less than 1.5 Mb length or ROH in sparsely genotyped regions.  

Calculating 𝑭𝐫𝐨𝐡 from imputed genotypes can introduce large downward bias. To call ROH 
from the UKB imputation we followed the method described by Yengo et al., but identified only 
9,067,605 SNPs (out of a total of 72,355,667) matching their inclusion criteria (MAF > 1%, INFO > 0.3, 
HWE exact p-value > 1e-6). We then used PLINK 2.0 to convert the imputed genotype probabilities 
to the hard-called genotypes required for LD pruning and ROH calling. PLINK first converts genotype 
probabilities to an estimated dosage which is then rounded to the nearest genotype ϵ [0 1 2]. By 
default, a genotype is recorded if the estimated dosage is within 0.15 of any of [0 1 2], otherwise the 
genotype is recorded as missing. Using these default parameters introduces 3.9% missingness into 
our dataset. We nevertheless proceeded to LD-prune this dataset, both with these missing data 
(method 2), and having removed all SNPs with a missing fraction > 0.03 (method 1). However, Yengo 
et al. state that Imputed SNPs were called to the genotypes having the largest posterior probability 
which is achieved by changing the PLINK hardcall parameter from 0.15 to 0.499999 (method Yengo). 
After LD pruning 3,061,484 SNPs remain for 141,774 British individuals.  

For all three methods of data preparation, we called ROH and calculated 𝐹roh using the Joshi et al. 
PLINK parameters also used by Yengo et al. We find that calling ROH from hard-called imputed 
dosages (method Yengo) gives 𝐹roh with an expected value of just 0.39 of the 𝐹ROH obtained from 
SNP chip genotypes (Supplementary Figure 13). More stringent treatments of uncertain genotype 
probabilities (methods 2 and 1) give progressively less downwards bias. To understand the cause of 
this downward bias in 𝐹roh we plotted the genome wide distribution of ROH for two high 𝐹 
individuals, highlighted in orange in Supplementary Figure 13. 

For these two individuals all ROH called from SNP chip genotypes (in blue) and the Yengo et al. 
imputed data method (in red) are shown in Supplementary Figs 14a,b. Individual 1 has an 𝐹ROH =



54 
 

0.261, amongst the highest observed in UKB, and is most likely the progeny of 1st degree relatives 
where 𝐸[𝐹] = 0.25. Individual 2 has 𝐹ROH = 0.0626 and is most likely the offspring of first cousins 
(3nd degree relatives) where 𝐸[𝐹] = 0.0625. Calling ROH from hard-called imputed dosages 
fragments, and consequently fails to identify, many of the ROH found in SNP chip data. The resultant 
downward bias in 𝐹roh is sufficient to explain an upward bias of up to 156% (1/0.39) in 𝛽̂𝐹roh. 

In summary, calculating 𝐹ROH from dense SNP chip genotypes, with the parameters used in this 
study, gives valid estimates of inbreeding coefficients. In contrast, calculating 𝐹roh from unfiltered 
imputed genotypes, as done in Yengo et al., introduces a large bias which appears to be responsible 
for the poor performance of 𝐹roh in that study. 

𝜷̂𝑭𝐆𝐑𝐌  is downwardly biased in real data. Yengo et al. also show, in both theory and simulation, 
that 𝛽̂𝐹UNI  is an unbiased estimate of 𝛽𝐹 in certain conditions, for example, when causal SNPs are a 
random subset of all observed SNPs. In real UKB data they find that 𝛽̂𝐹roh is systematically of greater 
magnitude than 𝛽̂𝐹UNI , which they therefore interpret as empirical evidence that 𝛽̂𝐹ROH is upwardly 
biased. We have already shown that calling ROH from imputed data may cause an upward bias of 
𝛽̂𝐹roh, however, interestingly, we also observe that estimates obtained from unbiased SNP-chip 
genotypes (𝛽̂𝐹ROH) are systematically larger than estimates obtained from frequency-based 
measures (𝛽̂𝐹SNP  and 𝛽̂𝐹GRM) (Supplementary Data Table 13). Note, we use the nomenclature 𝐹GRM 
to refer the 𝐹̂𝐼𝐼𝐼 calculation used in the ROHgen consortium. Although 𝐹GRM and 𝐹UNI are identical 
calculations (PLINK –ibc Fhat3), 𝐹GRM is calculated from SNP-chip genotypes with a minimum MAF of 
5%, while Yengo et al. calculated 𝐹UNI from hard called imputed dosages with a minimum MAF of 
1%. We explain the differences between 𝛽̂𝐹ROH  and 𝛽̂𝐹GRM  below. 

Causal variants for Inbreeding Depression are not in strong LD with common SNPs. For all 
traits, we fit bivariate models with 𝐹ROH and 𝐹GRM as explanatory variables. For all 32 traits that 
were significant in the univariate analysis, we find that 𝛽̂𝐹ROH|𝐹GRM  is of greater magnitude than 
𝛽̂𝐹GRM|𝐹ROH in the conditional analysis (Supplementary Data Table 22). Furthermore, for 30 of these 
traits 𝛽̂𝐹GRM|𝐹ROH  does not differ significantly from zero. I.e., for many traits, the variation of 𝐹GRM 
which is independent of 𝐹ROH is not associated with any change in trait values. In Supplementary 
Note 5 we show that these results are consistent with inbreeding depression caused by rare, but not 
common, variants. Furthermore, we observe that the downward bias of 𝛽̂𝐹GRM  is proportional to the 

ratio 𝑣𝑎𝑟(𝐹ROH)
𝑣𝑎𝑟(𝐹GRM)

 (Fig 4c), as expected when the difference between 𝐹GRM and 𝐹ROH can be considered 

as estimation error (See Supplementary Note 7). 

In summary, Yengo et al showed that 𝛽̂𝐹UNI  is unbiased when causal variants are a random subset of 
the observed SNPs. Although we agree with this statement, we find the evidence does not support 
the assumption of a random sample, but reveals the importance of rare variants, whose excess 
homozygosity is well predicted by 𝐹ROH (Supplementary Fig 16a). 

Comparison of genomic measures of inbreeding with genealogy. As a further assessment of 
the relative abilities of 𝐹ROH, 𝐹SNP and 𝐹GRM to capture inbreeding, we analysed Pearson's product-
moment correlations between the genomic inbreeding measures and pedigree inbreeding (𝐹PED) for 
47,927 Icelanders with mostly-complete (info score > 0.6)9 10 generation pedigrees. To decrease the 
confounding effects of pedigree mis-specification, a small number of individuals (n=20) with extreme 
discrepancies between genetics and genealogy (𝐹ROH > 0.05 & 𝐹SNP < 0.001) were removed. The 
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correlation was highest for 𝐹ROH (r = 0.779), lowest for 𝐹SNP (0.632) and intermediate for 𝐹GRM 
(0.682), further validating the utility of 𝐹ROH as the most accurate genomic measure of inbreeding. 

 

SUPPLEMENTARY NOTE 5: Interpretation of 𝑻𝒓𝒂𝒊𝒕 ~ 𝑭𝐑𝐎𝐇 + 𝑭𝐆𝐑𝐌 models. 

Are inbreeding effects caused by rare or common variants? 𝐹ROH is an estimate of autozygosity, 
which increases the homozygosity of all variants, both common and rare. In contrast, 𝐹GRM is 
calculated from common SNPs (>5% MAF) and correlates well with the homozygosity of common 
SNPs, but less well with rare SNPs which may be in weak Linkage Disequilibrium (LD). We therefore 
performed bivariate models of all traits in real data (𝑇𝑟𝑎𝑖𝑡 ~ 𝐹ROH + 𝐹GRM) to establish whether the 
observed inbreeding effects associate more strongly with 𝐹ROH or 𝐹GRM. For all significant traits, we 
find the observed associations more attributable to 𝐹ROH (Supplementary Data Table 22; 
Supplementary Figs 15a,b) suggesting inbreeding effects are caused by rare genetic variants. A 
recent study10 found evidence for a similar conclusion, but to further support this interpretation we 
investigate below how both 𝐹ROH and 𝐹GRM predict the excess homozygosity of SNPs at a range of 
allele frequencies. 

Relationships between 𝑭𝑹𝑶𝑯, 𝑭𝑮𝑹𝑴 and excess homozygosity at different allele frequencies. For 
any trait exhibiting inbreeding depression, the degree of depression will be related to the excess 
homozygosity (above Hardy-Weinberg expectation) of the causal variants. In Supplementary note 8, 
we show that inbreeding depression, which is equal to the sum of the dominance deviations at the 
causal loci, is proportional to the inbreeding coefficient (𝐹QTL) defined in equation (39) below. 

𝐼𝐷𝑖 =  ∑ 𝛿𝑖

𝑚

𝑖=1

= 𝛽𝐹 ∗ 𝐹QTL                                                      (38) 

Where 

𝐹QTL =
1
𝑚

∑
𝑤𝑖(𝑥𝑖

2 − (1 + 2𝑝𝑖)𝑥𝑖 + 2𝑝𝑖
2)

2𝑝𝑖𝑞𝑖

𝑚

𝑖=1

                                         (39) 

and 

𝑤𝑖 =
2𝑝𝑖𝑞𝑖𝑑𝑖

1
𝑚 ∑ 2𝑝𝑖𝑞𝑖𝑑𝑖

𝑚
𝑖=1

                                                                (40) 

We note that the unweighted form of equation (39) is identical to 𝐹̂𝐼𝐼𝐼 introduced by Yang et al 
(2011)6, and implemented in PLINK by the parameters –ibc Fhat3. This is the same formula used to 
calculate 𝐹GRM and 𝐹UNI from different sets of marker SNPs. In summary, if the causal loci and effect 
sizes are known, a weighted calculation of  𝐹̂𝐼𝐼𝐼 at the causal loci is directly proportional to the 
degree of inbreeding depression. We have used this, below, to simplify the simulation of inbreeding 
depression caused by variants at specific allele frequencies. 

If we imagine inbreeding depression caused exclusively by variants at one allele frequency then, in 
the absence of strong selection or assortative mating on the causal loci in the current generation, 
the expectation of 𝐹QTL will be equal to 𝐹̂𝐼𝐼𝐼 calculated at marker variants of the same allele 
frequency (henceforth called 𝐹MAF). 
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To calculate 𝐹MAF across a range of allele frequencies we extracted SNPs at seven frequencies 
(MAF=0.01, 0.025, 0.05, 0.1, 0.2, 0.4 & 0.5) from 402,559 genetically British samples in the phase 2 
UKB imputation. Selected SNPs were required to have a minor allele frequency (AF) within 10% of 
the specified MAF (0.9*MAF < AF < 1.1*MAF) and HWE p-value > 1e-6. The numbers of SNPs 
retained at each MAF are reported in Supplementary Table 2. 𝐹ROH and 𝐹GRM had previously been 
calculated, from SNP-chip genotypes, as part of the ROHgen meta-analysis. 

To investigate the relationships between 𝐹ROH, 𝐹GRM and 𝐹MAF we fit univariate (𝐹MAF ~ 𝐹ROH and 
𝐹MAF ~ 𝐹GRM) and bivariate models (𝐹MAF ~ 𝐹ROH + 𝐹GRM) at each allele frequency. In the 
univariate models we find 𝐹ROH to be an unbiased predictor of 𝐹MAF across the entire frequency 
spectrum, while 𝐹GRM is downwardly biased, particularly at low MAF (Supplementary Fig. 16a). 
Despite this downward bias, 𝐹GRM is more strongly correlated than 𝐹ROH at all MAF > 5% 
(Supplementary Figure 16b). In the bivariate model 𝐹GRM is a stronger predictor of the homozygosity 
of common SNPs (>10%), but 𝐹ROH is a stronger predictor for rare SNPs (Fig. 4d).  

Observed associations consistent with the homozygosity of rare, not common, SNPs. In real data 
models of 𝑇𝑟𝑎𝑖𝑡 ~ 𝐹ROH + 𝐹GRM, we consistently find the observed associations are preferentially 
attributed to 𝐹ROH rather than 𝐹GRM (Supplementary Data Table 22, Figure 4c, Supplementary Figs 
15a,b). In light of Figure 4d, these results are compatible with the action of rare, not common, causal 
variants. 

 

SUPPLEMENTARY NOTE 6: Limits of bias in FROH 

If 𝐹UNI is an unbiased estimate of 𝐹 then it can be expressed as 

𝐹UNI =  𝐹 +  𝜀                                                                           (20) 

If 𝐹ROH is a potentially biased estimate of 𝐹 then it can be expressed as 

𝐹ROH =  𝛩𝐹 +  𝛩𝜀′                                                                     (21)  

The regression slope (𝛽) of 𝐹UNI on 𝐹ROH is known, and 

𝛽 =
𝑐𝑜𝑣(𝐹𝑈𝑁𝐼, 𝐹𝑅𝑂𝐻)

𝑣𝑎𝑟(𝐹𝑅𝑂𝐻)
 

Substituting (20) and (21) and assuming independent errors gives 

𝛽 =
𝛩𝑣𝑎𝑟(𝐹)

𝛩2𝑣𝑎𝑟(𝐹) + 𝛩2𝑣𝑎𝑟(𝜀′)                                                           (22) 

 

Rearranging (22) gives 

𝛩 = (
1
𝛽

) (1 +
𝑣𝑎𝑟(𝜀′)
𝑣𝑎𝑟(𝐹))

−1

                                                           (23) 

The range of  𝑣𝑎𝑟(𝜀′)
𝑣𝑎𝑟(𝐹)  is limited by the correlation between 𝐹UNI and 𝐹ROH, and we can put 

(1 + 𝑣𝑎𝑟(𝜀′)
𝑣𝑎𝑟(𝐹) )

−1
in terms 𝑣𝑎𝑟(𝜀)

𝑣𝑎𝑟(𝜀′) of by considering that 
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𝑣𝑎𝑟(𝐹ROH)
𝑣𝑎𝑟(𝐹GRM)

=
𝑟2

𝛽2                                                                      (24) 

Again substituting (20) and (21) in equation (24) gives 

𝛩2𝑣𝑎𝑟(𝐹) + 𝛩2𝑣𝑎𝑟(𝜀′)
𝑣𝑎𝑟(𝐹) + 𝑣𝑎𝑟(𝜀)

=
𝑟2

𝛽2                                                         (25) 

Rearranging (25) gives 

𝑣𝑎𝑟(𝜀′)
𝑣𝑎𝑟(𝐹)

=
𝛩2𝛽2 −  𝑟2

𝑟2 𝑣𝑎𝑟(𝜀)
𝑣𝑎𝑟(𝜀′) − 𝛩2𝛽2

                                                      (26) 

Substituting equation (26) into equation (23) 

𝛩2 = (
1
𝛽

) (
𝑟2 𝑣𝑎𝑟(𝜀)

𝑣𝑎𝑟(𝜀′) − 𝛩2𝛽2

𝑟2 ( 𝑣𝑎𝑟(𝜀)
𝑣𝑎𝑟(𝜀′) − 1)

)                                                    (27) 

As 𝑣𝑎𝑟(𝜀)
𝑣𝑎𝑟(𝜀′) → 0, i.e. if 𝐹UNI is precise and estimation errors entirely on 𝐹ROH then equation (27) → 

𝛩 = (
1
𝛽

) (
𝛩2𝛽2

𝑟2 )                                                                   (28) 

𝛩 =
𝑟2

𝛽
                                                                              (29) 

As 𝑣𝑎𝑟(𝜀)
𝑣𝑎𝑟(𝜀′) → ∞, i.e. if 𝐹ROH is precise and estimation errors entirely on 𝐹UNI then equation (27) → 

𝛩 =
1
𝛽

                                                                               (30) 

Therefore, from the bounds of 𝑣𝑎𝑟(𝜀)
𝑣𝑎𝑟(𝜀′) and equations (29) and (30) 

𝑟2

𝛽𝐹UNI,𝐹ROH

≤  𝛩 ≤  
1

𝛽𝐹UNI,𝐹ROH

                                                      (31) 

 

SUPPLEMENTARY NOTE 7: Expected attenuation bias in 𝜷̂𝑭𝐆𝐑𝐌  

If 𝐹GRM varies around 𝐹ROH and the difference (𝜀) has no effect on the trait (𝑦) then 

𝐹GRM = 𝐹ROH + 𝜀                                                                      (32) 

And 

𝛽𝐹GRM =
𝑐𝑜𝑣(𝐹GRM, 𝑦)

𝑣𝑎𝑟(𝐹GRM)                                                               (33) 

𝛽𝐹GRM =
𝑐𝑜𝑣(𝐹ROH + 𝜀, 𝑦)

𝑣𝑎𝑟(𝐹GRM)                                                        (34) 

Because 𝜀 has no effect on the trait (𝑦) 
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𝛽𝐹GRM =
𝑐𝑜𝑣(𝐹ROH, 𝑦)
𝑣𝑎𝑟(𝐹GRM)                                                               (35) 

𝛽𝐹GRM = 𝛽𝐹ROH ∗
𝑣𝑎𝑟(𝐹ROH)
𝑣𝑎𝑟(𝐹GRM)                                                  (36) 

𝛽𝐹GRM

𝛽𝐹ROH

=
𝑣𝑎𝑟(𝐹ROH)
𝑣𝑎𝑟(𝐹GRM)                                                                 (37) 

 

SUPPLEMENTARY NOTE 8: Calculation of 𝑭𝐐𝐓𝐋 at known causal loci. 

If 𝑥𝑖𝜖[0,1,2] is the number of copies of the reference allele at locus 𝑖 of 𝑚 causal loci, then the 

number of reference homozygotes at the locus is 𝑥𝑖(𝑥𝑖−1)
2

, the number of heterozygotes is 

−𝑥𝑖(𝑥𝑖 − 2), and the number of alternate homozygotes is (𝑥𝑖−2)(𝑥𝑖−1)
2

. 

 

If 𝑝𝑖  is the frequency of the reference allele, and 𝑞𝑖 is the frequency of the alternate allele, then the 
inbreeding depression with complete inbreeding (𝛽) is 

𝛽 = − ∑ 2𝑝𝑖𝑞𝑖𝑑𝑖

𝑚

𝑖=1

                                                                       (41) 

Where 𝑑𝑖  is the difference between the heterozygote and mean homozygote value. We wish to 
define an inbreeding coefficient (𝐹𝑄𝑇𝐿) which is directly proportional to realised inbreeding 
depression (the sum of the dominance deviations). I.e. 

𝛽𝐹QTL = ∑ 𝛿𝑖

𝑚

𝑖=1

                                                                           (42) 

The dominance deviations (𝛿𝑖) for the three genotypes at a locus can be written in terms of 𝑑𝑖: 
𝛿𝑖𝜖[−2𝑞𝑖

2𝑑𝑖, 2𝑝𝑖𝑞𝑖𝑑𝑖, −2𝑝𝑖
2𝑑𝑖]. Substituting these dominance deviations and the genotype counts 

into equation (42) gives 

𝛽𝐹QTL = ∑ −
𝑚

𝑖=1

𝑥𝑖(𝑥𝑖 − 1)
2

2𝑞𝑖
2𝑑𝑖 − 𝑥𝑖(𝑥𝑖 − 2)2𝑝𝑖𝑞𝑖𝑑𝑖 −

(𝑥𝑖 − 2)(𝑥𝑖 − 1)
2

2𝑝𝑖
2𝑑𝑖               (43) 

Rearranging equation (43) gives 

𝛽𝐹QTL = ∑ −
𝑚

𝑖=1

𝑑𝑖(𝑥𝑖
2 − (1 + 2)𝑝𝑖𝑥𝑖 + 2𝑝𝑖

2)                                              (44) 

Substituting for 𝛽 from equation (41) gives 

𝐹QTL =
1
𝑚

∑ 𝑤𝑖
𝑥𝑖

2 − (1 + 2𝑝𝑖)𝑥𝑖 + 2𝑝𝑖
2

2𝑝𝑖𝑞𝑖

𝑚

𝑖=1

                                               (45) 

Where 
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𝑤𝑖 =
2𝑝𝑖𝑞𝑖𝑑𝑖

1
𝑚 ∑ 2𝑝𝑖𝑞𝑖𝑑𝑖

𝑚
𝑖=1

                                                                 (46) 
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